早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在平面直角坐标系xoy中,将直线y=kx沿着y轴向下平移三个单位长度后恰好经过B(-3,0)在平面直角坐标系xoy中,将直线y=kx沿着y轴向下平移三个单位长度后恰好经过B(-3,0),以及y轴上的C点,若抛物线Y=

题目详情
在平面直角坐标系xoy中,将直线y=kx沿着y轴向下平移三个单位长度后恰好经过B(-3,0)
在平面直角坐标系xoy中,将直线y=kx沿着y轴向下平移三个单位长度后恰好经过B(-3,0),以及y轴上的C点,若抛物线Y=-X?+bx+c与x轴交于A,B两点(点A在点B右侧),且经过点C.
(1),求直线BC以及抛物线的解析式
(2),设抛物线顶点为点D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P坐标
▼优质解答
答案和解析
(1)∵y=kx沿y轴向下平移3个单位长度后经过y轴上的点C,
∴C(0,-3)设直线BC的解析式为y=kx-3.
∵B(-3,0)在直线BC上,
∴-3k-3=0解得k=-1.
∴直线BC的解析式为y=-x-3∵抛物线y=-x2+bx+c过点B,C,
∴{-9-3b+c=0c=-3解得{b=-4c=-3,
∴抛物线的解析式为y=-x2-4x-3;
(2)由y=-x2-4x-3.可得D(-2,1),A(-1,0).∴OB=3,OC=3,OA=1,AB=2,
可得△OBC是等腰直角三角形.
∴∠OBC=45°,CB=32设抛物线对称轴与x轴交于点F,
∴AF=12AB=1.
过点A作AE⊥BC于点E.
∴∠AEB=90°.
可得BE=AE=2,CE=22,在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.∴AEAF=CEPF,21=22PF,
解得,PF=2,
∵点P在抛物线的对称轴上,
∴点P的坐标为(2,-2)或(-2,-2).