早教吧作业答案频道 -->数学-->
如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角a(0°<a<60°),旋转过程
题目详情
如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.
(1)求∠ADE的度数;
(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角a(0°<a<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求
的值;
(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断
的值是否为定值,如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.
(1)求∠ADE的度数;
(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角a(0°<a<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求
PM |
QN |
(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断
PM |
QN |
▼优质解答
答案和解析
(1)∵∠ACB=90°,D为AB的中点,
∴CD=DB,
∴∠DCB=∠B,
∵∠B=60°,
∴∠DCB=∠B=∠CDB=60°,
∴∠CDA=120°,
∵∠EDC=90°,
∴∠ADE=30°;
(2)∵∠C=90°,∠MDN=90°,
∴∠DMC+∠CND=180°,
∵∠DMC+∠PMD=180°,
∴∠CND=∠PMD,
同理∠CPD=∠DQN,
∴△PMD∽△QND,
过点D分别做DG⊥AC于G,DH⊥BC于H,
可知DG,DH分别为△PMD和△QND的高
∴
=
,
∵DG⊥AC于G,DH⊥BC于H,
∴DG∥BC,
又∵D为AC中点,
∴G为AC中点,
∵∠C=90°,
∴四边形CGDH 为矩形有CG=DH=AG,
Rt△AGD中,
=
即
=
(3)是定值,定值为tan(90°-β),
∵
=
,四边形CGDH 为矩形有CG=DH=AG,
∴Rt△AGD中,
=tan∠A=tan(90°-∠B)=tan(90°-β),
∴
=tan(90°-β)
∴CD=DB,
∴∠DCB=∠B,
∵∠B=60°,
∴∠DCB=∠B=∠CDB=60°,
∴∠CDA=120°,
∵∠EDC=90°,
∴∠ADE=30°;
(2)∵∠C=90°,∠MDN=90°,
∴∠DMC+∠CND=180°,
∵∠DMC+∠PMD=180°,
∴∠CND=∠PMD,
同理∠CPD=∠DQN,
∴△PMD∽△QND,
过点D分别做DG⊥AC于G,DH⊥BC于H,
可知DG,DH分别为△PMD和△QND的高
∴
PM |
QN |
DG |
DH |
∵DG⊥AC于G,DH⊥BC于H,
∴DG∥BC,
又∵D为AC中点,
∴G为AC中点,
∵∠C=90°,
∴四边形CGDH 为矩形有CG=DH=AG,
Rt△AGD中,
DG |
AG |
1 | ||
|
即
PM |
QN |
| ||
3 |
(3)是定值,定值为tan(90°-β),
∵
PM |
QN |
DG |
DH |
∴Rt△AGD中,
DG |
AG |
∴
PM |
QN |
看了 如图1,在Rt△ABC中,∠...的网友还看了以下:
在三角形ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果在AB上找一点E,使三角形AD 2020-05-15 …
如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B 2020-05-16 …
在锐角三角形ABC中,BC=9,AH垂直BC于点H,且AH=6,点D为AB边上的任意一点,过点D作 2020-05-16 …
如图,矩形ABCO位于直角坐标系平面,O为原点,A、C分别在坐标轴上,B的坐标为(8,5),线段B 2020-06-08 …
在直角坐标系中,已知线段AB,点A的坐标为(1,-2),点B的坐标为(3,0),如图1所示.(1) 2020-06-14 …
如图,在三角形ABC中,AB=AC=5,BC=6,D,E分别是边AB,AC上的两个动点(D不与AB 2020-07-22 …
求钟表指针从六点到七点时针与分针垂直的时刻A.6点16又5/11分或6点48又5/11分B.6点1 2020-07-31 …
等边三角形ABC边长是6,点D,E风别在AB,AC上,且AD=AE=2已知△ABC是边长为6的等边 2020-08-03 …
抛物线y=1/3x^2+4x+9,对称轴为-6,点D(-6,-3)为抛物线顶点,点N坐标为(-6,6 2020-12-31 …
如图,在三角形ABC中,AB=AC=5,BC=6点D为AB边上的一动点(D不与A、B重合),过D作D 2021-01-11 …