早教吧 育儿知识 作业答案 考试题库 百科 知识分享

△ABC的三条高分别为ha,hb,hc,r为内切圆半径,且ha+hb+hc=9r,求证:该三角形为等边三角形尽量别从知道上扒答案,

题目详情
△ABC的三条高分别为ha,hb,hc,r为内切圆半径,且ha+hb+hc=9r,求证:该三角形为等边三角形
尽量别从知道上扒答案,
▼优质解答
答案和解析
设△ABC面积为s,三条边分别为a b,c
则s=1/2*a *ha =1/2*b*hb=1/2*c*hc =rp (p=1/2(a+b+c))
所以ha=2s/a hb=2s/b hc=2s/c r=2s/(a+b+c)
代入ha+hb+hc=9r得 2s/a+2s/b+2s/c=9*2s/(a+b+c)
得1/a+1/b+1/c=9/(a+b+c)
得(a+b+c)(1/a+1/b+1/c)=9
a+b+c>=3(abc)^(1/3) 1/a+1/b+1/c>=3(1/(abc))^(1/3)
所以(a+b+c)(1/a+1/b+1/c)>=9
显然只有a=b=c时等号才成立.