早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数y=f(x)定义在R上,当x>0时,f(x)>1,且对任意m,n∈R,有f(m+n)=f(m)f(n),当m≠n时有f(m)≠f(n).证明:f(0)=1f(x)为增函数.

题目详情
设函数y=f(x)定义在R上,当x>0时,f(x)>1,且对任意m,n∈R,有f(m+n)=f(m)f(n),当m≠n时有f(m)≠f(n).
证明:f(0)=1        f(x)为增函数.
▼优质解答
答案和解析
证明:
令m>0,n=0
则f(m)>1,f(m)≠0
f(m+n)=f(m)f(n)
f(m)=f(m)*f(0)
f(m)*(1-f(0))=0
∵f(m)≠0
∴1-f(0)=0
∴f(0)=1
令m=-n
1=f(0)=f(m+n)=f(m)*f(n)
=f(m)*f(-m)
∴f(m)与f(-m)同号
又∵x>0时,f(x)>1>0为正,
∴对所有x∈R,f(x)>0
对任意x1>x2∈R
f(x1)
=f(x2+(x1-x2))
=f(x2)*f(x1-x2)
>f(x2)*1
=f(x2)
因此f(x)为R上的增函数,证毕
如仍有疑惑,欢迎追问.