早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,正方形ABCD中,点E是对角线BD上一点,点F是边BC上一点,点G是边CD上一点,BE=2ED,CF=2BF,连接AE并延长交CD于G,连接AF、EF、FG.给出下列五个结论:①DG=GC;②∠FGC=∠AGF;③S△ABF=S△FCG

题目详情
如图,正方形ABCD中,点E是对角线BD上一点,点F是边BC上一点,点G是边CD上一点,BE=2ED,CF=2BF,连接AE并延长交CD于G,连接AF、EF、FG.给出下列五个结论:①DG=GC;②∠FGC=∠AGF;③S△ABF=S△FCG;④AF=
2
EF;⑤∠AFB=∠AEB.其中正确结论的个数是(  )

A.5个
B.4个
C.3个
D.2个
▼优质解答
答案和解析
①∵BE=2DE
DG
AB
DE
BE
=
1
2

DG=
1
2
AB
∵AB=CD
∴DG=
1
2
CD
∴DG=CG
故本选项正确
②设BF=1,则CF=2,AB=AD=3,DG=CG=
3
2

过点E作AB的平行线,交AD于M,交BC于N,
可得四边形MNCD是矩形,△AMG∽ADG,且相似比为
2
3

∵AD=3,
∴AM=2,DM=1,NC=1,
则BN=BC-NC=2,FN=BN-BF=1,
∵MD∥BN,
∴△MDE∽NBE,
且相似比
1
2

∴ME=1,EN=2,
在Rt△EFN中,
EF=
EN2+FN2
=
5

在Rt△AME中,
AE=
AM2+AE2
=
5

在Rt△ABF中,
AF=
32+12
10

∴AE2+EF2=AF2
∴∠AEF=90°,
∵AG=
(
3
2
)2+32
=
3
2
5

∴EG=
5
2

∴tan∠AGF=
EF
EG
=2,
又tan∠FGC=
4
3

∴∠FGC≠∠AGF,
故本选项错误
③∵S△ABF=
1
2
×1×3=
3
2

S△FCG=
1
2
×2×1.5
=
3
2

∴S△ABF=SFCG
故本选项正确
④连接EC,过E点作EH⊥BC,垂足为H,
由②可知AF=
10

∵BE=2ED,
∴BH=2HC,EH=
2
3
CD=2,
又∵CF=2BF,
∴H为FC的中点,FH=1,
∴在Rt△HEF中:
∵EF=
FH2+EH2

=
12+22
=
5

AF=
10

∴AF=
2
EF
故本选项正确.
⑤过A点作AO⊥BD,垂足为O,
AB
AO
AF
AE
2
1

∴Rt△ABF∽Rt△AOE,
∴∠AFB=∠AEB.
故本选项正确.
故选B.