早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取a′=a+22,可得:2=2+22<a′=a+22<a+a2=a≤3,与假设中“a是A中的最小数”矛

题目详情
在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集B={x|x=
n
m
,m,n∈N*,并且n<m}没有最大数”,也可以用反证法证明.我们可以假设x=
n0
m0
是B中的最大数,则可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.
▼优质解答
答案和解析
证明数集B={x|x=
n
m
,m,n∈N*,并且n<m}没有最大数”,可以用反证法证明.
假设x=
n0
m0
是B中的最大数,则可以找到x'=
n0+1
m0+1

,n0+1<m0+1,n0+1∈N*,m0+1∈N*,且x'>x,
这与假设矛盾!所以数集B没有最大数.
故答案为:
n0+1
m0+1