早教吧作业答案频道 -->数学-->
已知函数f(x)=-x2+2ex+m-1,g(x)=x+e2x(x>0).(1)若g(x)=m有实根,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
题目详情
已知函数f(x)=-x2+2ex+m-1,g(x)=x+
(x>0).
(1)若g(x)=m有实根,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
e2 |
x |
(1)若g(x)=m有实根,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
▼优质解答
答案和解析
(1)方法一:∵g(x)=x+
≥2e,等号成立的条件是x=e.
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则g(x)=m就有实根.
故m的取值范围是{m|m≥2e}.
方法二:作出g(x)=x+
(x>0)的图象如图:
观察图象,知:若使g(x)=m有实根,则只需m≥2e,故m的取值范围是{m|m≥2e}.
方法三:解方程由g(x)=m,得x2-mx+e2=0,此方程有大于零的根,
故
,等价于
,故m≥2e.
故m的取值范围是{m|m≥2e}.
(2)若g(x)-f(x)=0有两个相异的实根,即g(x)=f(x)中,函数g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+
(x>0)的图象,
∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,
其对称轴为x=e,开口向下,最大值为m-1+e2,
故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)的图象有两个不同的交点,即g(x)-f(x)=0有两个相异的实根,∴m的取值范围是:(-e2+2e+1,+∞).
e2 |
x |
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则g(x)=m就有实根.
故m的取值范围是{m|m≥2e}.
方法二:作出g(x)=x+
e2 |
x |
观察图象,知:若使g(x)=m有实根,则只需m≥2e,故m的取值范围是{m|m≥2e}.
方法三:解方程由g(x)=m,得x2-mx+e2=0,此方程有大于零的根,
故
|
|
故m的取值范围是{m|m≥2e}.
(2)若g(x)-f(x)=0有两个相异的实根,即g(x)=f(x)中,函数g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+
e2 |
x |
∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,
其对称轴为x=e,开口向下,最大值为m-1+e2,
故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)的图象有两个不同的交点,即g(x)-f(x)=0有两个相异的实根,∴m的取值范围是:(-e2+2e+1,+∞).
看了 已知函数f(x)=-x2+2...的网友还看了以下:
已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=n-g(x)m+2g(x)是 2020-05-02 …
已知指数函数y=g(x)满足g(3)=8,定义域为R的函数f(x)=1-g(x)m+2g(x)是奇 2020-05-02 …
已知函数f(x)=|x^2-4x+3|,g(x)=m,若方程f(x)=g(x)有四个不同的实根,求 2020-05-20 …
幂函数g(x)=(m^2-m-1)x^m的图像关于y轴对称,且函数f(x)=g(x)-2ax+1在 2020-06-02 …
设f和g都是D上的初等函数.定义M(x)=max{f(x),g(x)},m(x)=min{f(x) 2020-06-18 …
已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x(x>0)(1)若函数h( 2020-06-18 …
已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=n−g(x)m+2g(x)是 2020-07-22 …
数学分析上册.设f和g都是D上的初等函数设f和g都是D上的初等函数,定义M(x)=max{f(x) 2020-08-02 …
1已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x(x>0)(1)若g(x) 2020-10-31 …
已知指数函数y=g(x)满足:g(3)=27,定义域为R的函数f(x)=n-g(x)m+3g(x)是 2020-12-23 …