早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(几何证明选讲选做题)PA与圆O切于A点,PCB为圆O的割线,且不过圆心O,已知∠BPA=30°,PA=2,PC=1,则圆O的半径等于(坐标系与参数方程选做题)在极坐标系中,过点()作圆ρ=4sinθ的

题目详情
(几何证明选讲选做题)PA与圆O切于A点,PCB为圆O的割线,且不过圆心O,已知∠BPA=30°,PA=2,PC=1,则圆O的半径等于________(坐标系与参数方程选做题)在极坐标系中,过点()作圆ρ=4sinθ的切线,则切线的极坐标方程是________.
▼优质解答
答案和解析
7    ρcosθ=2
(1)如图,连AO并延长,交圆O与另一点E,交割线PCB于点D,
则Rt△PAD中,由∠DPA=30°,PA=2,得AD=2,PD=4,而PC=1,
故CD=3,由切割线定理,得PA2=PC•PB,即(22=1•PB,则PB=11,
故DB=8.
设圆O的半径为R,
由相交弦定理,CD•DB=AD•DE,即3×8=2(2R-2),
得R=7;
(2)(2)的直角坐标为:(2,2),圆ρ=4sinθ的直角坐标方程为:x2+y2-4y=0;显然,圆心坐标(0,2),半径为:2;
所以过(2,2)与圆相切的直线方程为:x=2,所以切线的极坐标方程是:ρcosθ=2
故答案为:7;ρcosθ=2.