早教吧作业答案频道 -->数学-->
(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.
题目详情
(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.
求证:AE∥BC.
求证:AE∥BC.
▼优质解答
答案和解析
证明:∵△ABC和△DEC是等边三角形,
∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,
∴∠BCA-∠DCA=∠ECD-∠DCA,
即∠BCD=∠ACE,
∵在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴∠EAC=∠B=60°=∠ACB,
∴AE∥BC.
∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,
∴∠BCA-∠DCA=∠ECD-∠DCA,
即∠BCD=∠ACE,
∵在△ACE和△BCD中
|
∴△ACE≌△BCD(SAS),
∴∠EAC=∠B=60°=∠ACB,
∴AE∥BC.
看了 (2012•泸州)如图,△A...的网友还看了以下:
抛物线y=ax^2;+bx,经过点A(4,0),B(2,2),连接OBAB抛物线y=ax2+bx,经 2020-03-30 …
抛物线y=ax²+bx,经过点A(4,0),B(2,2),连接OBAB抛物线y=ax2+bx,经过点 2020-03-30 …
两个可导函数乘积是否可导?为什么?设f(x)在[a.b]上连续,且对所有那些在[a,b]上满足附加 2020-05-13 …
f(x)在[0,1]连续,在(0,1)可导.f(0)=0,f(1)=1.证明存在两点a,b属于(f 2020-06-18 …
证明方程x=asinx+b(a>0,b>0)至少有一个正根,并且不超过a+bf(x)在闭区间[0, 2020-07-20 …
1.确定a,b的值,使函数(分段函数)f(x)=1/x·sin2x,(x<0);f(x)=a,x= 2020-07-22 …
已知点A(0,0)B(2,3)C(2,4)D(5,5)E(1,4)F(0,6)连接ABCDEF将线 2020-08-02 …
当x不等于0时,函数f(x)=xsin(1/x);当x等于0时,函数f(x)=0,则在x=0处()A 2020-11-03 …
1函数f[x]在xo处可导,则|f[x]|在xo处A必定可导B必定不可导C必定连续D必定不连续2函数 2020-11-20 …
急微分函数f(x)=|x-1|()A在点x=1处连续可导B在点x=1处不连续C在点x=0处连续可导D 2020-12-12 …