早教吧作业答案频道 -->数学-->
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段OB上一动点,以CD已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段用户名:蒋******|分类:
题目详情
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段 OB上一动点,以CD
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段
用户名:蒋****** |分类:初中数学 |浏览845次2014-01-16 17:48
OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF,若S△OBC=8,AC=BC.(1)求抛物线的解析式;(2)求证:BF⊥AB;(3)求∠FBE的度数;(4)当D点沿x轴正方向移动到点B时,点E也随着移动,求点E所走过的路线长
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段
用户名:蒋****** |分类:初中数学 |浏览845次2014-01-16 17:48
OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF,若S△OBC=8,AC=BC.(1)求抛物线的解析式;(2)求证:BF⊥AB;(3)求∠FBE的度数;(4)当D点沿x轴正方向移动到点B时,点E也随着移动,求点E所走过的路线长
▼优质解答
答案和解析
分析:(1)根据抛物线的对称性得到抛物线的对称轴为y轴,则b=0;然后利用方程与二次函数的关系求得点B、C的坐标,由S△OBC=8可以求得c的值;
(2)由抛物线y=-1/4 x^2+4交x轴于点A、B,当x=0,求出图象与y轴的交点坐标,以及y=0,求出图象与x轴的交点坐标,即可得出三角形的形状;首先证明△ACD≌△BCF,利用三角形的全等,得出∠ABF=∠ABC+∠CBF=90°,即可得出答案;
(3)如图,连接BE,过点E作EM⊥x轴于点M.易证△ODC≌△DME,则DM=OC=4,OD=EM.易求BM=EM.则∠MBE=∠MEB=45°;由(2)知,BF⊥AB,故 ∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC的长度.
(1)如图,∵AC=BC,
∴该抛物线的对称轴是y轴,则b=0.
∴C(0,c),B(根号4c ,0).
∵S△OBC=8,
∴1/2OC•OB=1 /2×c×根号4c=8,解得c=4(c>0).
故该抛物线的解析式为y=-1/4x^2+4;
(2)证明:由(1)得到抛物线的解析式为y=-1/4x^2+4;
令y=0,得x1=4,x2=-4,
∴A(-4,0),B(4,0),
∴OA=OB=OC,
∴△ABC是等腰直角三角形;
如图,又∵四边形CDEF是正方形,
∴AC=BC,CD=CF,∠ACD=∠BCF,
在△ACD和△BCF中
AC=BC;
∠ACD=∠BCF;
CD=CF;
∴△ACD≌△BCF(SAS),
∴∠CBF=∠CAD=45°,
∴∠ABF=∠ABC+∠CBF=90°,
∴BF⊥AB;
(3)如图,连接BE,过点E作EM⊥x轴于点M.
易证△ODC≌△DME,则DM=OC=4,OD=EM.
∵OD=OB-BD=4-BD=DM-BD=BM,
∴BM=EM.
∵∠EMB=90°,
∴∠MBE=∠MEB=45°;
由(2)知,BF⊥AB,
∴∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC=4根号2
(2)由抛物线y=-1/4 x^2+4交x轴于点A、B,当x=0,求出图象与y轴的交点坐标,以及y=0,求出图象与x轴的交点坐标,即可得出三角形的形状;首先证明△ACD≌△BCF,利用三角形的全等,得出∠ABF=∠ABC+∠CBF=90°,即可得出答案;
(3)如图,连接BE,过点E作EM⊥x轴于点M.易证△ODC≌△DME,则DM=OC=4,OD=EM.易求BM=EM.则∠MBE=∠MEB=45°;由(2)知,BF⊥AB,故 ∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC的长度.
(1)如图,∵AC=BC,
∴该抛物线的对称轴是y轴,则b=0.
∴C(0,c),B(根号4c ,0).
∵S△OBC=8,
∴1/2OC•OB=1 /2×c×根号4c=8,解得c=4(c>0).
故该抛物线的解析式为y=-1/4x^2+4;
(2)证明:由(1)得到抛物线的解析式为y=-1/4x^2+4;
令y=0,得x1=4,x2=-4,
∴A(-4,0),B(4,0),
∴OA=OB=OC,
∴△ABC是等腰直角三角形;
如图,又∵四边形CDEF是正方形,
∴AC=BC,CD=CF,∠ACD=∠BCF,
在△ACD和△BCF中
AC=BC;
∠ACD=∠BCF;
CD=CF;
∴△ACD≌△BCF(SAS),
∴∠CBF=∠CAD=45°,
∴∠ABF=∠ABC+∠CBF=90°,
∴BF⊥AB;
(3)如图,连接BE,过点E作EM⊥x轴于点M.
易证△ODC≌△DME,则DM=OC=4,OD=EM.
∵OD=OB-BD=4-BD=DM-BD=BM,
∴BM=EM.
∵∠EMB=90°,
∴∠MBE=∠MEB=45°;
由(2)知,BF⊥AB,
∴∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC=4根号2
看了 已知抛物线y=-1\4x²+...的网友还看了以下:
在平面坐标系中 抛物线的解析式是y=1/4xx+1,点c的坐标为(-4.0),平行四边形oabc的 2020-05-16 …
已知抛物线C的顶点在原点焦点F在x轴正半轴上设AB是抛物线C上的两个动点已知抛物线C的顶点在原点, 2020-05-16 …
抛物线y=x的平方向下平移后,设他与x轴的两个交点分别位A B 且抛物线的顶点为C抛物线y=x的平 2020-05-16 …
将抛物线y=x方向下平移后,设它与x轴的两个交点分别为A,B,且抛物线的顶点为C(1)若△ABC为 2020-05-16 …
将抛物线Y=X^(二次方)向下平移后,设它与X轴的两个交点分别是A,B,且抛物线的顶点为C.(1) 2020-05-17 …
已知任意3点A,B,C.其坐标分别为A(M,N)B(O,P)C(V,W)求对应的抛物线解析式y=a 2020-06-02 …
(高二数学题,求助求助,非常紧急,非常感谢)给定抛物线C:y=(-1/2)x^2,点A,B在抛物线 2020-06-05 …
抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A、B,已知点A的坐标为(1,4),△ 2020-06-14 …
已知关于X的方程(a+b)x^2-2ax+a=0有两个不相等的实数根x1,x2,并且抛物线y=x^ 2020-06-27 …
若点A,B是抛物线x*2=2y上不同的两点,抛物线过点A,B的切线的交点P在直线x--y--1=0 2020-07-26 …