早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知有穷数列{an},{bn}对任意的正整数n∈N*都有a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.(1)若{an}是等差数列,且首项和公差相等,求证:{bn}是等比数列.(2)若{an}是等差数列,且{bn}是等比数

题目详情
已知有穷数列{an},{bn}对任意的正整数n∈N*都有a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.
(1)若{an}是等差数列,且首项和公差相等,求证:{bn}是等比数列.
(2)若{an}是等差数列,且{bn}是等比数列,求证:anbn=n•2n-1
▼优质解答
答案和解析
(1){an}是等差数列,且首项和公差相等,设首项和公差为a,数列{an}的通项公式是an=na,
∵a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2,
∴abn+2abn-1+3abn-2+…+(n-1)ab2+nab1=2n+1-n-2①,
∴abn-1+2abn-2+…+(n-2)ab2+(n-1)ab1=2n-n-1②,
①-②得,
a(bn+bn-1+••+b2+b1)=2n-1,
bn=
1
a
×2n-1,数列{bn}是首项为
1
a
,公比为2的等比数列.
(2){an}是等差数列,设首项为a,公差为d,an=a+(n-1)d,
{bn}是等比数列,设首项为b,公比为q,则bn=bqn-1
bqn-1a1+bqn-2a2+bqn-3a3+…+bqan-1+ban=2n+1-n-2,
又bqn-2a1+bqn-3a2+bqn-4a3+…+ban-1=2n-n-1(n≥2),
故(2n-n-1)q+ban=2n+1-n-2,
an=
2−q
b
×2n+
q−1
b
×n+
q−2
b

∴an+1-an=
2−q
b
×2n+
q−1
b

∵{an}是等差数列,
∴q=2,d=
1
b

∴anbn=n•2n-1