早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F作FG⊥AE交BC于点G.(1)求证:AF=FG;(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.

题目详情
如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F作FG⊥AE交BC于点G.
(1)求证:AF=FG;
(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.
▼优质解答
答案和解析
(1)证明:如图①,连接CF,
在正方形ABCD中,AB=BC,∠ABF=∠CBF=45°,
在△ABF和△CBF中,
AB=BC
∠ABF=∠CBF=45°
BF=BF

∴△ABF≌△CBF(SAS),
∴AF=CF,∠BAF=∠BCF,
∵FG⊥AE,
∴在四边形ABGF中,∠BAF+∠BGF=360°-90°-90°=180°,
又∵∠BGF+∠CGF=180°,
∴∠BAF=∠CGF,
∴∠CGF=∠BCF,
∴CF=FG,
∴AF=FG;

(2)如图②,把△ADE顺时针旋转90°得到△ABH,则AH=AE,BH=DE,∠BAH=∠DAE,
∵AF=FG,FG⊥AE,
∴△AFG是等腰直角三角形,
∴∠EAG=45°,
∴∠HAG=∠BAG+∠DAE=90°-45°=45°,
∴∠EAG=∠HAG,
在△AHG和△AEG中,
AH=AE
∠EAG=∠HAG
AG=AG

∴△AHG≌△AEG(SAS),
∴HG=EG,
∵HG=BH+BG=DE+BG=2+3=5,
∴EG=5.