早教吧作业答案频道 -->数学-->
e为什么等于(1+1/n)n
题目详情
e 为什么等于(1+1/n)n
▼优质解答
答案和解析
只有当n→∞时,e=(1+1/n)^n.首先需要二项式定理:
(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1?a+b?故此,n=1时,式一成立.
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)
=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
下面用二项式定理计算这一极限:
(1+1/n)^n (式一)
用二项式展开得:
(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n
由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0.因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1.余下分母.于是式一化为:
当n -> +∞时,你可以用计算机,或笔计算此值.这一数值定义为e.
(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1?a+b?故此,n=1时,式一成立.
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)
=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
下面用二项式定理计算这一极限:
(1+1/n)^n (式一)
用二项式展开得:
(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n
由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0.因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1.余下分母.于是式一化为:
当n -> +∞时,你可以用计算机,或笔计算此值.这一数值定义为e.
看了 e为什么等于(1+1/n)n...的网友还看了以下:
地理问题,求助两点的相对高度公式:相对高度小于(n+1)*等高距,大于等于(n+1)*等高距。其中 2020-04-13 …
记数列{an}的前n项和为Sn,若{Sn/an}是公差为d的等差数列,则{an}为等差数列时d=解 2020-05-23 …
一道高数题,极限方面的当X趋向于0正时,2/πcosπ/2(1-x)与X为等价无穷小,我知道当li 2020-06-03 …
根据初等因子求不变因子设5级阵的初等因子为,(λ+1)3次方,(λ-1),(λ-1)求A的不变因子 2020-06-18 …
等比数列n-1项求和问题等比数列的前n项和的问题,假如数列首相是1公比为2,数列的项数为N-1那么 2020-07-28 …
为什么指数函数的底要大于0且不等1啊y=a^x我看到说要是a=1的话y恒等于1,但是这样也是函数啊 2020-08-02 …
趁暑假的时间,想先自己学一下,但有好多东西都看不懂,越详细越好,1.什么是有序数对,它的概念和特点是 2020-11-11 …
为什么求陡崖的相对高度要用(n-1)×d≦H<(n+1)×d其中d为等高距n表示重合的等高线条数?这 2020-11-19 …
已知函数f(x)=1+x/1-x的定义域为A,函数y=f(f(x))的定义域为B,则A∩B=?答案是 2020-12-08 …
高二数列的真假命题.1.若An=A(n-1)+3(n≥2),则An为等差数列.2.若A(n+1)-A 2020-12-14 …