早教吧作业答案频道 -->数学-->
求拉格朗日乘数求极值从二元单条件限制推广到多元多条件限制的证明如求F=f(X,Y,Z,T)在g(X,Y,Z,T)=0和k(X,Y,Z,T)=0限制下的极值为社么L(X,Y,Z,T)=f(X,Y,Z,T)+I*g(X,Y,Z,T)+O*k(X,Y,Z,T)(IO是常数
题目详情
求拉格朗日乘数求极值从二元单条件限制推广到多元多条件限制的证明
如求F=f(X,Y,Z,T)在g(X,Y,Z,T)=0和k(X,Y,Z,T)=0限制下 的 极值 为社么L(X,Y,Z,T)=f(X,Y,Z,T)+I*g(X,Y,Z,T)+O*k(X,Y,Z,T)(I O是常数)的极值就是问题所求的极值.
希望我把问题讲明白了
希望详细些
如求F=f(X,Y,Z,T)在g(X,Y,Z,T)=0和k(X,Y,Z,T)=0限制下 的 极值 为社么L(X,Y,Z,T)=f(X,Y,Z,T)+I*g(X,Y,Z,T)+O*k(X,Y,Z,T)(I O是常数)的极值就是问题所求的极值.
希望我把问题讲明白了
希望详细些
▼优质解答
答案和解析
一时半会儿还真难讲明白.
这个就是最小二乘法原理的一种应用,在初中大家就知道了,从直线外一点到这直线的最短距离是垂线,从平面外一点到明面的最短距离也是垂线.那么空间外一点到这个空间的最短距离呢?就是垂直于这个空间所有基的一条直线段.
楼主不是专门研究数学的,知道上面我讲的这个原理就可以了.如果再讲下去就要摆出函数空间的内容了.这是泛函空间的知识了.
这个就是最小二乘法原理的一种应用,在初中大家就知道了,从直线外一点到这直线的最短距离是垂线,从平面外一点到明面的最短距离也是垂线.那么空间外一点到这个空间的最短距离呢?就是垂直于这个空间所有基的一条直线段.
楼主不是专门研究数学的,知道上面我讲的这个原理就可以了.如果再讲下去就要摆出函数空间的内容了.这是泛函空间的知识了.
看了 求拉格朗日乘数求极值从二元单...的网友还看了以下:
求两个例子1.z=f(x,y)在一点处可微分但偏导数不连续2.z=f(x,y)的两个二阶混合偏导数 2020-05-16 …
关于多元函数求导的一道题费解中设Z=F[x^2+y^2,g(x,y)],其中f有二阶连续偏导数,g 2020-05-17 …
函数f(x,y)在y>x>0时连续可导已知对于任意z>y>x,有f(x,y)*f(y,z)=f(x 2020-05-22 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
若可微函数z=f(x,y)在极坐标系下只是θ的函数,证明:x(∂f/∂x)+y(∂f/(∂y)=0 2020-07-21 …
设F(u,v)有连续偏导数,方程F(x+y+z,x^2+y^2+z^2)=0确定函数z=f(x,y 2020-07-29 …
求极值和最值一、设z=z(x,y)是由x²-6xy+10y²-2yz-z²+18=0确定的函数,求 2020-07-31 …
关于一个概率论的小问题,答得好有追加分二维随机变量服从Z=X+Y的分布,由卷积公式可得,Z的概率密 2020-08-02 …
请问:求三元函数f(x,y,z)=x+y+z在曲面S:x平方+y平方=z和平面z=1围成的闭区域D上 2020-11-01 …
求教几个高数问题1.求下列函数的一阶偏导数(其中f具有一阶连续偏导数)①u=f(x^2-y^2,e^ 2020-11-01 …