早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和是Sn,且对于任意自然数n,Sn=6-an-3/[2^(n-1)],求通项公式an
题目详情
已知数列{an}的前n项和是Sn,且对于任意自然数n,Sn=6-an-3/[2^(n-1)],求通项公式an
▼优质解答
答案和解析
对于任意自然数n,Sn=6-an-3/[2^(n-1)],
当n=1时,S1=6-a1-3/[2^0],a1=3/2.
当n≥2时,S(n-1)=6-a(n-1)-3/[2^(n-2)],
Sn=6-an-3/[2^(n-1)],
以上两式相减得:an=-an+ a(n-1) -3/[2^(n-1)]+ 3/[2^(n-2)]
即an=-an+ a(n-1) + 3/[2^(n-1)]
2 an= a(n-1) + 3/[2^(n-1)]
两边同乘以2^(n-1)可得:2^n•an=2^(n-1) •a(n-1)+3,
这说明数列{2^n•an }是首项为2a1=3,公差为3的等差数列.
2^n•an=3+3(n-1),
2^n•an=3n,
an=3n/2^n.
当n=1时,S1=6-a1-3/[2^0],a1=3/2.
当n≥2时,S(n-1)=6-a(n-1)-3/[2^(n-2)],
Sn=6-an-3/[2^(n-1)],
以上两式相减得:an=-an+ a(n-1) -3/[2^(n-1)]+ 3/[2^(n-2)]
即an=-an+ a(n-1) + 3/[2^(n-1)]
2 an= a(n-1) + 3/[2^(n-1)]
两边同乘以2^(n-1)可得:2^n•an=2^(n-1) •a(n-1)+3,
这说明数列{2^n•an }是首项为2a1=3,公差为3的等差数列.
2^n•an=3+3(n-1),
2^n•an=3n,
an=3n/2^n.
看了 已知数列{an}的前n项和是...的网友还看了以下:
已知公差不为0的等差数列{an}的前3项和S3=9,且a1,a2,a3成等比数列.(1)求数列{a 2020-05-13 …
(2014•南昌二模)已知公比不为1的等比数列{an}的首项a1=12,前n项和为Sn,且a4+S 2020-05-13 …
已知公差不为0的等差数列{an}的首项为a(a属于R),且1/a1,1/a2,1/a3成等比数列. 2020-05-13 …
已知公差不为0的等差数列{an}的前n项和为Sn,S4=a5+13,且a1,a4,a13恰为等比数 2020-05-14 …
(2014•湖北)已知公差不为0的等差数列{an}的前3项和S3=9,且a1,a2,a5成等比数列 2020-05-14 …
苏州古典园林始于东晋,全盛时期多达200处,目前保存下来的只占4分之1.未对公众开放的有30处已对 2020-07-28 …
(本题满分12分)已知函数(为自然对数的底数).(1)求的最小值;(2)不等式的解集为,若且求实数 2020-08-02 …
与“且惜光阴”中的且字义相同的两项是A愚公者,年且九十B且欲与常马等不可得,安求其能千里也?C存者且 2020-11-22 …
已公证遗嘱,只有一个公证员在公证书上签名,可以吗?一份已被公证的遗嘱,只有一个公证员在公证书上签名, 2020-12-04 …
谁能给我三阶魔方最后一层的角对换公式和角位置不变三边颜色变的公式?我第一第二层已经对好了第三层已对好 2021-01-07 …