早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示:∠ABC的平分线BF与△ABC中∠ACB的相邻外角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,延长BC至M,则: ①图中有几个等腰三角形?为什么?②BD,CE,DE之间存在着什么关

题目详情
如图所示:∠ABC的平分线BF与△ABC中∠ACB的相邻外角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,延长BC至M,则:

①图中有几个等腰三角形?为什么?
②BD,CE,DE之间存在着什么关系?请证明.
▼优质解答
答案和解析
(1)图中有2个等腰三角形即△BDF和△CEF,
∵BF、CF分别平分∠ABC、∠ACB的外角,
∴∠DBF=∠CBF,∠FCE=∠FCM,
∵DE∥BC,
∴∠DFB=∠CBF,∠EFC=∠FCM,
∴∠DBF=∠DFB,∠FCE=∠EFC,
∴BD=FD,EF=CE,
∴△BDF和△CEF为等腰三角形;
(2)存在:BD-CE=DE,
证明:∵DF=BD,CE=EF,
∴BD-CE=FD-EF=DE.