早教吧作业答案频道 -->其他-->
如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.(Ⅰ)求证:AB∥EF;(Ⅱ)若AB=BC=2EF=2,BD与平面BCF成30°的角,求二面角F-BD-C的正切值.
题目详情
如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若AB=BC=2EF=2,BD与平面BCF成30°的角,求二面角F-BD-C的正切值.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若AB=BC=2EF=2,BD与平面BCF成30°的角,求二面角F-BD-C的正切值.
▼优质解答
答案和解析
(Ⅰ)证明:∵AB∥CD,CD⊂面CDEF,AB⊄面CDEF,
∴AB∥面CDEF.
又∵AB⊂面ABEF,面ABEF∩面CDEF=EF,
∴AB∥EF;
(Ⅱ)∵DE⊥面ABCD,∴DE⊥BC.
又∵BC⊥CD,∴BC⊥面CDEF.
又∵BC⊂面BCF,∴面BCF⊥面CDEF.
过点D作DG⊥CF,则DG⊥面BCF,∴∠DBG为BD与平面BCF所成角.即∠DBG=30°
又BD=2
,∴DG=BD•sin30°=
,则DE=1且点G与点F重合.
取DC中点M,连接FM,则FM⊥面ABCD,
过M作MN⊥BD交BD于点N,连接FN,则∠FNM即为二面角F-BD-C的平面角,
∴tan∠FNM=
=
=
∴AB∥面CDEF.
又∵AB⊂面ABEF,面ABEF∩面CDEF=EF,
∴AB∥EF;
(Ⅱ)∵DE⊥面ABCD,∴DE⊥BC.
又∵BC⊥CD,∴BC⊥面CDEF.
又∵BC⊂面BCF,∴面BCF⊥面CDEF.
过点D作DG⊥CF,则DG⊥面BCF,∴∠DBG为BD与平面BCF所成角.即∠DBG=30°
又BD=2
2 |
2 |
取DC中点M,连接FM,则FM⊥面ABCD,
过M作MN⊥BD交BD于点N,连接FN,则∠FNM即为二面角F-BD-C的平面角,
∴tan∠FNM=
FM |
MN |
1 | ||||
|
2 |
看了 如图,在五面体ABCDEF中...的网友还看了以下:
在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC所在的直线上运动,作∠ADE=45° 2020-05-13 …
抛物线y=ax^2+c(a0)的顶点为A,点B,C在抛物线上,四边形ABCD是正方形.(1)求a的 2020-05-17 …
如图,已知点A(-3,2)、B(2,0),点C在x轴上,将△ABC沿x轴折叠,使点A落在点D处已知 2020-07-09 …
如图,边长为2的菱形纸片ABCD中,∠A=60°,将该纸片折叠,EF为折痕,点A、D分别落在A′、 2020-07-17 …
已知A、B、C不在同一直线上,顺次连接AB、BC、CA.(Ⅰ)如图①,点D在线段BC上,DE∥AB 2020-07-20 …
已知,在三角形ABC中,D为直线AC上一点,角ABC=角ACB=x度,角ADF=角AFD=y度,直 2020-07-21 …
已知△ABC中,角C=90度,AB=9,cosA=2/3,把△ABC绕着点C旋转,使得点A落在点D, 2020-11-02 …
已知,在△ABC中,点D是平面内任意一点,连接BD,CD(1)若点D在△内部,求证∠BDC=∠ABD 2020-12-09 …
已知,在三角形abc中,点d是平面内任意一点,连接bd,cd.⑴若点d在三角形的内部,如图1所示,求 2020-12-09 …
已知,在△ABC中,点D是平面内一点,连接BD,CD.⑴若点d在三角形的内部,如图1所示,求证∠bd 2020-12-09 …