早教吧作业答案频道 -->数学-->
如图,△ABC是一个等边三角形,点D、E分别在AB、AC上,F是BE和CD的交点,已知∠BFC=120°.求证:AD=CE.
题目详情
如图,△ABC是一个等边三角形,点D、E分别在AB、AC上,F是BE和CD的交点,已知∠BFC=120°.求证:AD=CE.
▼优质解答
答案和解析
证明:∵∠BFC=120°,
∴∠ECF=∠BFC-∠CEB=120°-∠CEB,
又△ABC是等边三角形,
∴∠EBC=180°-60°-∠CEB=120°-∠CEB,
∴∠ECF=∠EBC,
即∠DCA=∠EBC,
又∵△ABC是等边三角形,
∴∠CAD=∠BCE=60°,AC=CB
∴△ACD≌△CBE,
∴AD=CE.
∴∠ECF=∠BFC-∠CEB=120°-∠CEB,
又△ABC是等边三角形,
∴∠EBC=180°-60°-∠CEB=120°-∠CEB,
∴∠ECF=∠EBC,
即∠DCA=∠EBC,
又∵△ABC是等边三角形,
∴∠CAD=∠BCE=60°,AC=CB
∴△ACD≌△CBE,
∴AD=CE.
看了 如图,△ABC是一个等边三角...的网友还看了以下:
一.3的11次方表示成K项连续正整数的和,则项数K的最大值为A.594B.486C.374D.243 2020-03-30 …
设f(x)可导,F(x)=f(x)(1+|x|),要使F(x)在x=0处可导,则必有()设f(x) 2020-06-11 …
已知二次函数f(x)满足f(2+x)=f(2-x),又f(x)在0,2上是增函数,且f(a)>=f 2020-06-12 …
函数f(x)满足:f(x+y)=f(x)+f(y)(a,b∈R),则下列各式不恒成立的是().A. 2020-06-12 …
一个小物体m在沿斜面M向下的力F作用下沿斜面匀速下滑,斜劈受到地面的摩擦力为f与支持力为N则()A 2020-06-28 …
已知f'(x)在点x=0处连续,且lim(x→0)[f'(x)/ln(1+x)]=-1,则A.f( 2020-07-31 …
设f(x)在x=0的某邻域内存在二阶导数,且f'(x)=0,lim(x→0)f''(x)/|x|= 2020-07-31 …
已知二次函数f(x)满足f(2+x)=f(2-x),又f(x)在0,2上是增函数,且f(a)>=f 2020-08-01 …
为什么不是f(a)>f(0)/e^af(x)位定义在R上的可导函数,且f'(x)>f(x),对任为什 2020-11-03 …
对于f(x)有f(x)的导数大于f(x),那么对于任意的a>0,f(a)与e^a*f(0)(看不清楚 2020-12-29 …