早教吧作业答案频道 -->数学-->
关于三角函数的数学题目,在△ABC中,内角A,B,C所对的边长分别为a,b,c,已知c=2,C=60°.求1)若三角形ABC的面积等于根号3,求a,b2)若sinB=2sinA,求△ABC的面积已知△ABC的周长为根号2+1,且sinA+sinB=根号2sinc
题目详情
关于三角函数的数学题目,
在△ABC中,内角A,B,C所对的边长分别为a,b,c,已知c=2,C=60°.
求1)若三角形ABC的面积等于根号3,求a,b
2)若sinB=2sinA,求△ABC的面积
已知△ABC的周长为根号2+1,且sinA+sinB=根号2sinc
求1)边AB的长
2)若△ABC的面积为六分之一sinc,求角C的度数
在△ABC中,内角A,B,C所对的边长分别为a,b,c,已知c=2,C=60°.
求1)若三角形ABC的面积等于根号3,求a,b
2)若sinB=2sinA,求△ABC的面积
已知△ABC的周长为根号2+1,且sinA+sinB=根号2sinc
求1)边AB的长
2)若△ABC的面积为六分之一sinc,求角C的度数
▼优质解答
答案和解析
1)三角形面积S=1/2absinC 解得ab=4 ①
根据余弦定理:c²=a²+b²-2abcosC
得a²+b²=8 ②
由①②的两个式子可以解得:
a=2,b=2
2)根据正弦定理 :a/sinA=b/sinB
∵sinA=2sinB,带入上式得 a=2b
∵角C=60
∴三角形ABC为直角三角形
∴三角形ABC的面积为1
1)由正弦定理可得:
a/sinA=b/sinB=c/sinC
sinA+sinB=√2sinC
所以a+b=√2c
a+b+c=2√2+2
所以√2c+c=2√2+2
所以AB=c=2
2)a+b=√2c=2√2
S=1/2absinC=(2-√2)sinC
ab=4-2√2
(a+b)^2=a^2+b^2+2ab=8
所以a^2+b^2=4√2
cosC=(a^2+b^2-c^2)/2ab=√2/2
C=45
根据余弦定理:c²=a²+b²-2abcosC
得a²+b²=8 ②
由①②的两个式子可以解得:
a=2,b=2
2)根据正弦定理 :a/sinA=b/sinB
∵sinA=2sinB,带入上式得 a=2b
∵角C=60
∴三角形ABC为直角三角形
∴三角形ABC的面积为1
1)由正弦定理可得:
a/sinA=b/sinB=c/sinC
sinA+sinB=√2sinC
所以a+b=√2c
a+b+c=2√2+2
所以√2c+c=2√2+2
所以AB=c=2
2)a+b=√2c=2√2
S=1/2absinC=(2-√2)sinC
ab=4-2√2
(a+b)^2=a^2+b^2+2ab=8
所以a^2+b^2=4√2
cosC=(a^2+b^2-c^2)/2ab=√2/2
C=45
看了 关于三角函数的数学题目,在△...的网友还看了以下:
展线是展长线路的缩略说法。青藏铁路西宁一格尔木段的关角展线群是我国现存展线最密集的地方,随着201 2020-05-17 …
1.在三角形ABC中,角C=90度,角A=30度,分别以AB、AC为边为三角形ABC的外边作等边三 2020-05-17 …
如果三角形的三边长满足a²+b²=c²,则三角形为直角三角形.如果三边满足a²+b²>c²或a²+ 2020-06-08 …
已知等腰三角形三边的长为a、b、c,且a=c.若关于x的一元二次方程ax2−2bx+c=0的两根之 2020-06-08 …
已知等腰三角形三边的长为a、b、c,且a=c.若关于x的一元二次方程ax2−2bx+c=0的两根之 2020-06-08 …
已知等腰三角形三边的长为a、b、c,且a=c.若关于x的一元二次方程ax2−2bx+c=0的两根之 2020-06-08 …
如图.点E,F在BC上,BE等于CF,AB等于DC,角B等于角C.求证角A等于角C.根据概念(S如 2020-06-27 …
若a、b、c是三角形abc的三边长,且满足a方减10a加b方减24b加根号c减13加169等于0, 2020-07-18 …
已知a,b,c是三角形ABC的三边长,(a-5)^2+|b-12|+c^2-26c+169=0,则 2020-07-18 …
已知等腰三角形三边长分别为a、b、c,且a=c,若关于x的一元二次方程ax^2-(根号2)·bx+ 2020-08-02 …