早教吧作业答案频道 -->数学-->
多项式x^6+x^3+1在有理域是否可约?怎么判断呢?(不满足艾森斯坦法,还有谁知道别的方法吗?
题目详情
多项式x^6+x^3+1在有理域是否可约?怎么判断呢?(不满足艾森斯坦法,还有谁知道别的方法吗?
▼优质解答
答案和解析
由f(x) = x^6+x^3+1是x^9-1的因式,不难求出f(x)的6个根:
e^(±2πi/9),e^(±4πi/9),e^(±8πi/9).
可设f(x) = g(x)h(x),其中g,h都是首一的整系数多项式.
由实系数多项式虚根成对,e^(±2πi/9)要么同时是g(x)的根,要么同时是h(x)的根.
于是g(x)或h(x)含有因式(x-e^(2πi/9))(x-e^(-2πi/9)) = x^2-2cos(2πi/9)x+1.
同理,g(x)或h(x)含有因式x^2-2cos(4πi/9)x+1,以及x^2-2cos(8πi/9)x+1.
因此,若g(x)或h(x)次数都不小于1,则次数必为2,4分组.
其中2次因式必为上述三者之一.
但这三个都不是整系数多项式,矛盾.
故f(x)不可约.
注1:这道题比较特殊,x^6+x^3+1其实是一个分圆多项式.
从抽象代数的角度可以立即知道其不可约.
注2:虽然f(x) = x^2+x+1不可约,但是f(x^2) = x^4+x^2+1 = (x^2-x+1)(x^2+x+1)是可约的.
这是给楼下的反例.
注3:讨论整系数多项式分解的另一种办法是考虑mod p意义下的分解.
比如x^6+x^3+1其实是mod 2不可约的,所以在有理数域上也不可约 (反过来是不成立的).
e^(±2πi/9),e^(±4πi/9),e^(±8πi/9).
可设f(x) = g(x)h(x),其中g,h都是首一的整系数多项式.
由实系数多项式虚根成对,e^(±2πi/9)要么同时是g(x)的根,要么同时是h(x)的根.
于是g(x)或h(x)含有因式(x-e^(2πi/9))(x-e^(-2πi/9)) = x^2-2cos(2πi/9)x+1.
同理,g(x)或h(x)含有因式x^2-2cos(4πi/9)x+1,以及x^2-2cos(8πi/9)x+1.
因此,若g(x)或h(x)次数都不小于1,则次数必为2,4分组.
其中2次因式必为上述三者之一.
但这三个都不是整系数多项式,矛盾.
故f(x)不可约.
注1:这道题比较特殊,x^6+x^3+1其实是一个分圆多项式.
从抽象代数的角度可以立即知道其不可约.
注2:虽然f(x) = x^2+x+1不可约,但是f(x^2) = x^4+x^2+1 = (x^2-x+1)(x^2+x+1)是可约的.
这是给楼下的反例.
注3:讨论整系数多项式分解的另一种办法是考虑mod p意义下的分解.
比如x^6+x^3+1其实是mod 2不可约的,所以在有理数域上也不可约 (反过来是不成立的).
看了 多项式x^6+x^3+1在有...的网友还看了以下:
已知f(x)的定义域为[-1,1]且满足f(-1)=f(1)=0,并对任意的u,v∈[-1,1]都 2020-05-19 …
如愿以偿是什么意思〖解释〗偿:实现、满足.按所希望的那样得到满足.指愿望实现.〖出处〗清·吴趼人《 2020-05-23 …
三角换元满足条件设实数x,y满足x2+<y-1>2=1,若对满足条件的xy,x+y+c≥0求c的取 2020-06-08 …
已知数列{an}中,a1=1,且满足递推关系an+1=2a2n+3an+man+1(m∈N*)(1 2020-06-14 …
如何用MATLAB构造满足某条件的N*(N-1)的列满秩矩阵I(n)=(1,.,1)是个1*n的向 2020-06-27 …
已知一次函数y=(2-k)x-2k+6,(1)k满足何条件时,它的图象经过原点;(2)k满足何条件 2020-07-25 …
已知数列{an}中,a1=1,且满足递推关系an+1=2a2n+3an+man+1(m∈N*)(1 2020-08-01 …
.x,y满足x²-y²=2xy,求x-y/x+y(数字解)1.x,y满足x²-y²=2xy,求x- 2020-08-03 …
再帮我看几个问题好吗?1,X,Y是相互独立的随机变量,都满足[0,2]上的均匀分布,问P{max(X 2020-12-07 …
这题谁能解出来呢?在xy的坐标内,直线k的斜率为负,直线k经过一点(-5,r),问如何能使直线k在x 2021-01-12 …