早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知抛物线y=-x2+mx-n的对称轴为x=-2,且与x轴只有一个交点.(1)求m,n的值;(2)把抛物线沿x轴翻折,再向右平移2个单位,向下平移1个单位,得到新的抛物线C,求新抛物线C的解析式;(

题目详情
已知抛物线y=-x2+mx-n的对称轴为x=-2,且与x轴只有一个交点.

(1)求m,n的值;
(2)把抛物线沿x轴翻折,再向右平移2个单位,向下平移1个单位,得到新的抛物线C,求新抛物线C的解析式;
(3)已知P是y轴上的一个动点,定点B的坐标为(0,1),问:在抛物线C上是否存在点D,使△BPD为等边三角形?若存在,请求出点D的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵抛物线的对称轴为x=-2,
∴m=-4.
∵抛物线与x轴只有一个交点,
∴m2-4n=0.
∴n=4.
(2)∵m=-4,n=4,
∴y=-x2-4x-4.
∴y=-(x+2)2
∴抛物线C的解析式为 y=x2-1.
(3)假设点D存在,设D(a,b).作业搜
作DH⊥y轴于点H,如图;
则DH=|a|,BH=|b-1|.
由△DPB为等边三角形,
得Rt△DHB中,∠HBD=60°.
tan60°=
DH
BH

3
=
|a|
|b-1|

∴a2=3(b-1)2
∵D(a,b)在抛物线C上,
∴b=a2-1.
∴b=3(b-1)2-1.
∴b=2或b=
1
3

a=±
3
a=±
2
3
3

∴满足条件的点存在,分别为D1(
3
,2),D2(-
3
,2),D3(
2
3
3
1
3
),D4(-
2
3
3
1
3
).