早教吧作业答案频道 -->数学-->
若z^2+z+1=0,求(1+z)*(1+z^2)*(1+z^4)*(1+z^8)…(1+z^1若z^2+z+1=0,求(1+z)*(1+z^2)*(1+z^4)*(1+z^8)…(1+z^1024)的值.
题目详情
若z^2+z+1=0,求(1+z)*(1+z^2)*(1+z^4)*(1+z^8 )…(1+z^1
若z^2+z+1=0,求(1+z)*(1+z^2)*(1+z^4)*(1+z^8
)…(1+z^1024)的值.
若z^2+z+1=0,求(1+z)*(1+z^2)*(1+z^4)*(1+z^8
)…(1+z^1024)的值.
▼优质解答
答案和解析
∵z²+z+1=0,∴z=(-1±根号3)/2,∴z≠1.
(z-1)(z²+z+1)=0,即z³=1.
∴原式=(1-z)•(1+z)•(1+z²)•(1+z∧4)•••(1+z∧1024)/1—z
=(1-z∧2048)/1-z
=1-z²╱1-z=1+z=(1±根号3)/2.
(z-1)(z²+z+1)=0,即z³=1.
∴原式=(1-z)•(1+z)•(1+z²)•(1+z∧4)•••(1+z∧1024)/1—z
=(1-z∧2048)/1-z
=1-z²╱1-z=1+z=(1±根号3)/2.
看了 若z^2+z+1=0,求(1...的网友还看了以下:
一,已知A={x|x=k/4+1/2,k∈Z} B={x|x=k/8+1/4,k∈Z}那么集合A与 2020-05-16 …
求曲面z=√(x^2+y^2)与z=8-(x^2+y^2)/4所围成的立体的的表面积和体积 2020-06-15 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
高数习题求教求向量场A=(y-2z)i+(z-2x)j+(x-2y)k沿曲线τ的环流量,其中τ为曲 2020-06-15 …
高数求解求由方程2x^2+2y^2+2z^2+8yz-z+8=0所确定的函数z=z(x,y)的极值 2020-07-18 …
已知三个字符为:a、Z和8,按它们的ASCII码值升序排序,结果是.A、8,a,Z已知三个字符为: 2020-07-23 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
x,y,z>0x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2求证x/(1 2020-10-31 …
一.若分式(4x+8)/(x^2-4)为整数,求x的整数值二.若x/2=y/3=z/4,求(x^2+ 2020-10-31 …
设正数x,y,z,满足不等式:x^2+y^2-z^2/2xy+y^2+z^2-x^2/2yz+z^2 2020-11-01 …