早教吧作业答案频道 -->数学-->
已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F(1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.①若BF′=6,
题目详情
已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F
(1)如图①,求证:AE=AF;
(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.
①若BF′=6,求CE′的长;
②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.
(1)如图①,求证:AE=AF;
(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.
①若BF′=6,求CE′的长;
②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.
▼优质解答
答案和解析
(1)证明:∵AB=AC,
∴∠ABC=∠C,
∵EF∥BC,
∴∠AFE=∠A,∠AEF=∠C,
∴∠AFE=∠AEF,
∴AE=AF.
(2) ①由旋转的性质得,∠E′AC=∠F′AB,AE′=AF′,
在△CAE′和△BAF′中,
,
∴△CAE′≌△BAF′(SAS),
∴CE′=BF′=6;
②由(1)可知AE=BC,
所以,在△AEF绕点A逆时针旋转过程中,点E经过的路径(圆弧)与过点C且与AB平行的直线l相交于点M、N,如图,
①当点E的像E′与点M重合时,四边形ABCM是等腰梯形,
所以,∠BAM=∠ABC=72°,
又∵∠BAC=36°,
∴α=∠CAM=36°;
②当点E的像E′与点N重合时,
∵CE′∥AB,
∴∠AMN=∠BAM=72°,
∵AM=AN,
∴∠ANM=∠AMN=72°,
∴∠MAN=180°-72°×2=36°,
∴α=∠CAN=∠CAM+∠MAN=36°+36°=72°,
综上所述,当旋转角α为36°或72°.
∴∠ABC=∠C,
∵EF∥BC,
∴∠AFE=∠A,∠AEF=∠C,
∴∠AFE=∠AEF,
∴AE=AF.
(2) ①由旋转的性质得,∠E′AC=∠F′AB,AE′=AF′,
在△CAE′和△BAF′中,
|
∴△CAE′≌△BAF′(SAS),
∴CE′=BF′=6;
②由(1)可知AE=BC,
所以,在△AEF绕点A逆时针旋转过程中,点E经过的路径(圆弧)与过点C且与AB平行的直线l相交于点M、N,如图,
①当点E的像E′与点M重合时,四边形ABCM是等腰梯形,
所以,∠BAM=∠ABC=72°,
又∵∠BAC=36°,
∴α=∠CAM=36°;
②当点E的像E′与点N重合时,
∵CE′∥AB,
∴∠AMN=∠BAM=72°,
∵AM=AN,
∴∠ANM=∠AMN=72°,
∴∠MAN=180°-72°×2=36°,
∴α=∠CAN=∠CAM+∠MAN=36°+36°=72°,
综上所述,当旋转角α为36°或72°.
看了 已知,△ABC中,AB=AC...的网友还看了以下:
如图,已知在Rt△ABC,AB=AC,∠BAC=90°,过A的任一条直线AN,BD⊥AN于D,CE 2020-06-08 …
如图,在Rt△ABC中,AB=AC,∠BAC=90°,过点A任做一条直线AN,BD⊥AN于D,CE 2020-06-08 …
(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E. 2020-06-12 …
如图,矩形ABCD中,AB=6,AD=8,将矩形ABCD绕点C顺时针旋转得到矩形A′B′C′D′, 2020-06-13 …
四边形ABCD是由等边△ABC和顶角为120°的等腰△ABD拼成,将一个60°角顶点放在D处,将6 2020-06-18 …
如图1,等腰△ABC中,∠BAC=120°,将△ABC绕点A逆时针旋转角α(0°<α<60°)得到 2020-07-09 …
关于多层e指数函数的问题例如e的1次方的0次方等于多少?如果将e的1次方括起来,则等于1如果将1的 2020-07-20 …
分段函数求导?设f(x)={[(1+x)^(1/x0]-e,x不等于00,x=0求f(x)在x=0 2020-07-22 …
如图,边长为2的等边三角形ABC内接于⊙O,将△ABC绕圆心O沿顺时针方向旋转得到△A′B′C′, 2020-08-03 …
(1)如图1,将∠EAF绕着正方形ABCD的顶点A顺时针旋转,∠EAF的两边交BC于E,交CD于F, 2020-10-31 …