早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道数形结合的题已知a,b,c为三角形ABC的三边,且满足a^2+2b^2+c^2+867=30a+68b+16c,试判断三角形ABC的形状

题目详情
一道数形结合的题
已知a,b,c为三角形ABC的三边,且满足a^2+2b^2+c^2+867=30a+68b+16c,试判断三角形ABC的形状
▼优质解答
答案和解析
将a^2+2b^2+c^2+867=30a+68b+16c变形为:
a^2-30a+2b^2-68b+c^2-16c+867=0
a^2-30a+225+2b^2-68b+578+c^2-16c+64=0
(a-15)^2+2(b-17)^2+(c-8)^2=0
由于上面三项平方式都是非负数,为使总和为0,只能是(a-15)^2=0,2(b-17)^2=0,(c-8)^2=0.分别解得:a=15,b=17,c=8.
由于8^2+15^2=17^2,所以该三角形是以b为斜边,a、c为直角边的直角三角形.