早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知,在△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC于点M.(1)如图1,当点E在线段AC上时,点D在AB的延长线上时,若BD=CE,请判断线段MD和线

题目详情
已知,在△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC于点M.

(1)如图1,当点E在线段AC上时,点D在AB的延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.
(2)如图2,当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.
(3)如图3,当点E在CA的延长线上,点D在线段AB上(点D不与A、B重合),DE所在直线与直线BC交于点M,若CE=mBD,(m>1),请直接写出线段MD与线段ME的数量关系.
▼优质解答
答案和解析
(1)DM=EM;(1分)
证明:过点E作EF∥AB交BC于点F,(2分)
∵AB=AC,∴∠ABC=∠C;
又∵EF∥AB,∴∠ABC=∠EFC,∴∠EFC=∠C,
∴EF=EC.又∵BD=EC,∴EF=BD.
又∵EF∥AB,∴∠ADM=∠MEF.
在△DBM和△EFM中
∠BDM=∠FEM
∠BMD=∠FME
BD=EF

∴△DBM≌△EFM,∴DM=EM.(4分)
(2)成立;(5分)
证明:过点E作EF∥AB交CB的延长线于点F,(6分)
∵AB=AC,∴∠ABC=∠C;
又∵EF∥AB,∴∠ABC=∠EFC,
∴∠EFC=∠C,∴EF=EC.
又∵BD=EC,∴EF=BD.
又∵EF∥AB,∴∠ADM=∠MEF.
在△DBM和△EFM中
∠BDE=∠FEM
∠BMD=∠FME
BD=EF

∴△DBM≌△EFM;∴DM=EM;(8分)
(3)过点E作EF∥AB交CB的延长线于点F,
∴△DBM∽△EFM,
∴BD:EF=DM:ME,
∵AB=AC,
∴∠ABC=∠C,
∵∠F=∠ABC,
∴∠F=∠C,
∴EF=EC,
∴BD:EC=DM:ME=1:m,
MD=
1
m
ME.(10分)