早教吧作业答案频道 -->其他-->
(2014•杨浦区三模)梯形ABCE中,AD∥BC,DC⊥BC,CE⊥AB于点E,点F在边CD上,且BE•CE=BC•CF.(1)求证:AE•CF=BE•DF;(2)若点E为AB中点,求证:AD•BC=2EC2-BC2.
题目详情
(2014•杨浦区三模)梯形ABCE中,AD∥BC,DC⊥BC,CE⊥AB于点E,点F在边CD上,且BE•CE=BC•CF.
(1)求证:AE•CF=BE•DF;
(2)若点E为AB中点,求证:AD•BC=2EC2-BC2.
(1)求证:AE•CF=BE•DF;
(2)若点E为AB中点,求证:AD•BC=2EC2-BC2.
▼优质解答
答案和解析
证明:(1)∵CE⊥AB,
∴∠B+∠BCE=90°,
∵DC⊥BC,
∴∠DCE+∠BCE=90°,
∴∠B=∠DCE,
∵BE×CE=BC×CF,
∴
=
,
∴△BCE∽△CEF,
∴∠BCE=∠CEF,
∴EF∥BC,
∴
=
,
即AE•CF=BE•DF.
(2)∵在梯形ABCD中,EF∥BC∥AD,E为AB中点,
∴F为DC的中点,
∴EF=
(AD+BC),
∵△BCE∽△CEF,
∴
=
,即CE2=BC•EF,
∴CE2=
(AD+BC)•BC,
整理得:AD•BC=2EC2-BC2.
∴∠B+∠BCE=90°,
∵DC⊥BC,
∴∠DCE+∠BCE=90°,
∴∠B=∠DCE,
∵BE×CE=BC×CF,
∴
BE |
BC |
CF |
CE |
∴△BCE∽△CEF,
∴∠BCE=∠CEF,
∴EF∥BC,
∴
AE |
BE |
DF |
CF |
即AE•CF=BE•DF.
(2)∵在梯形ABCD中,EF∥BC∥AD,E为AB中点,
∴F为DC的中点,
∴EF=
1 |
2 |
∵△BCE∽△CEF,
∴
BC |
CE |
CE |
EF |
∴CE2=
1 |
2 |
整理得:AD•BC=2EC2-BC2.
看了 (2014•杨浦区三模)梯形...的网友还看了以下:
给定复杂几何条件下求点的坐标.(1)已知点A(1,2),P在x轴上,且∠APO=45°,直接写出P 2020-05-13 …
如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在如图,抛物 2020-06-03 …
丨a丨表示a与原点距离,当a=0时,丨a丨最小值为0;丨a-1丨表示a点与点1的距离,当a=1时, 2020-06-23 …
在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为 2020-06-29 …
数学题急已知点A(-1,0),B(-1,1)和抛物线C:y^2=4x,O为坐标原点,过点A的动直线 2020-07-24 …
已知正三角形ABC的顶点A(1.1),B(1.3)顶点C在第一象限,若点(x,y)在三角已知正三角 2020-07-30 …
如图:已知在平面直角坐标系中点A(a,b)点B(a,0),且满足|2a-b|+(b-4)2=0.( 2020-07-31 …
坐标平面提问在y轴上有一点P,它与点A(1、-2)的距离为3,点P的坐标是连结两点A(1、m),B 2020-08-01 …
立体几何已知空间直角坐标系Oxyz中的点A(1,1,1),平面a过点A且与直线OA垂直,动点P(x 2020-08-02 …
abc三个人一起去一家咖啡馆就餐a点了1杯咖啡,1个蛋糕花了7.20$b点了2杯咖啡,2个蛋糕,3 2020-08-04 …