早教吧作业答案频道 -->数学-->
设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=ex.若对任意的x∈[a,a+1],不等式f(x+a)≥f2(x)恒成立,则实数a的最大值是()A.−32B.−23C.−34D.2
题目详情
设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=ex.若对任意的x∈[a,a+1],不等式f(x+a)≥f2(x)恒成立,则实数a的最大值是( )
A. −
B. −
C. −
D. 2
A. −
3 |
2 |
B. −
2 |
3 |
C. −
3 |
4 |
D. 2
▼优质解答
答案和解析
∵f(x)是定义在R上的偶函数,
∴不等式f(x+a)≥f2(x)恒成立等价为f(|x+a|)≥f2(|x|)恒成立,
∵当x≥0时,f(x)=ex.
∴不等式等价为e|x+a|≥(e|x|)2=e2|x|恒成立,
即|x+a|≥2|x|在[a,a+1]上恒成立,
平方得x2+2ax+a2≥4x2,
即3x2-2ax-a2≤0在[a,a+1]上恒成立,
设g(x)=3x2-2ax-a2,
则满足
,
∴
,
即
,
∴a≤−
,
故实数a的最大值是−
.
故选:C.
∴不等式f(x+a)≥f2(x)恒成立等价为f(|x+a|)≥f2(|x|)恒成立,
∵当x≥0时,f(x)=ex.
∴不等式等价为e|x+a|≥(e|x|)2=e2|x|恒成立,
即|x+a|≥2|x|在[a,a+1]上恒成立,
平方得x2+2ax+a2≥4x2,
即3x2-2ax-a2≤0在[a,a+1]上恒成立,
设g(x)=3x2-2ax-a2,
则满足
|
∴
|
即
|
∴a≤−
3 |
4 |
故实数a的最大值是−
3 |
4 |
故选:C.
看了 设f(x)是定义在R上的偶函...的网友还看了以下:
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
周期函数问题f(x)=-f(x+1)=f((x+1)+1)=f(x+2)“f(x)=-f(x+1) 2020-05-14 …
一道有关微积分中值定理的题目已知函数f(x)在区间【0,1】上连续,在(0,1)内可导,且f(0) 2020-05-16 …
f(x)=x^2+ax+b(1)函数f(x)的图像过(1,1),f(-1)=f(3),求g(x)= 2020-05-16 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
高中函数题目``好象要求导``但我才高一`谁来做下,谢了设函数f(x)的定义域为[-1,0)U(0 2020-06-06 …
单调函数f(x)f在闭区间I上的值域也是I单调函数f(x)f在闭区间I上的值域也是I,则称f(x) 2020-06-08 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
设定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意x,y属于R,有f(x+y)=f 2020-06-12 …
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …