早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在矩形ABCD中,BM⊥AC,DN⊥AC,M、N是垂足.(1)求证:AN=CM;(2)如果AN=MN=2,求矩形ABCD的面积.

题目详情
如图,在矩形ABCD中,BM⊥AC,DN⊥AC,M、N是垂足.
(1)求证:AN=CM;
(2)如果AN=MN=2,求矩形ABCD的面积.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∴∠DAC=∠BCA,
又∵DN⊥AC,BM⊥AC,
∴∠DNA=∠BMC,
∴△DAN≌△BCM,
∴AN=CM.

(2)连接BD交AC于点O.
∵AN=NM=2,
∴AC=BD=6,
又∵四边形ABCD是矩形,
∴AO=DO=3,
在△ODN中,OD=3,ON=1,∠OND=90°,
∴DN=
OD2−ON2
=2
2

∴矩形ABCD的面积=AC×DN=12
2

答:矩形ABCD的面积是12
2