早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、C

题目详情
(2010•玉溪)平面内的两条直线有相交和平行两种位置关系

(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
▼优质解答
答案和解析
(1)不成立.结论是∠BPD=∠B+∠D
延长BP交CD于点E,
∵AB∥CD
∴∠B=∠BED
又∵∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.

(2)结论:∠BPD=∠BQD+∠B+∠D.

(3)连接EG并延长,
根据三角形的外角性质,∠AGB=∠A+∠B+∠E,
又∵∠AGB=∠CGF,
在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
看了 (2010•玉溪)平面内的两...的网友还看了以下: