早教吧作业答案频道 -->物理-->
(2014•遂宁)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD.(1)求证:PD是⊙O的切线.(2)求证:PD2=PB•PA.(3)若PD=4,tan∠CDB=12,求直径AB的
题目详情
(2014•遂宁)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD.
(1)求证:PD是⊙O的切线.
(2)求证:PD2=PB•PA.
(3)若PD=4,tan∠CDB=
,求直径AB的长.
(1)求证:PD是⊙O的切线.
(2)求证:PD2=PB•PA.
(3)若PD=4,tan∠CDB=
1 |
2 |
▼优质解答
答案和解析
(1)证明:连接OD,OC,
∵PC是⊙O的切线,
∴∠PCO=90°,
∵AB⊥CD,AB是直径,
∴弧BD=弧BC,
∴∠DOP=∠COP,
在△DOP和△COP中,
,
∴△DOP≌△COP(SAS),
∴∠PDO=∠PCO=90°,
∵D在⊙O上,
∴PD是⊙O的切线;
(2)证明:∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠PDO=90°,
∴∠ADO=∠PDB=90°-∠BDO,
∵OA=OD,
∴∠A=∠ADO,
∴∠A=∠PDB,
∵∠P=∠P,
∴△PDB∽△PAD,
∴
=
,
∴PD2=PA•PB;
(3)∵DC⊥AB,
∴∠ADB=∠DMB=90°,
∴∠A+∠DBM=90°,∠CDB+∠DBM=90°,
∴∠A=∠CDB,
∵tan∠CDB=
,
∴tanA=
=
,
∵△PDB∽△PAD,
∴
=
=
=
∵PD=4,
∴PB=2,PA=8,
∴AB=8-2=6.
∵PC是⊙O的切线,
∴∠PCO=90°,
∵AB⊥CD,AB是直径,
∴弧BD=弧BC,
∴∠DOP=∠COP,
在△DOP和△COP中,
|
∴△DOP≌△COP(SAS),
∴∠PDO=∠PCO=90°,
∵D在⊙O上,
∴PD是⊙O的切线;
(2)证明:∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠PDO=90°,
∴∠ADO=∠PDB=90°-∠BDO,
∵OA=OD,
∴∠A=∠ADO,
∴∠A=∠PDB,
∵∠P=∠P,
∴△PDB∽△PAD,
∴
PD |
PB |
PA |
PD |
∴PD2=PA•PB;
(3)∵DC⊥AB,
∴∠ADB=∠DMB=90°,
∴∠A+∠DBM=90°,∠CDB+∠DBM=90°,
∴∠A=∠CDB,
∵tan∠CDB=
1 |
2 |
∴tanA=
1 |
2 |
BD |
AD |
∵△PDB∽△PAD,
∴
PB |
PD |
PD |
PA |
BD |
AD |
1 |
2 |
∵PD=4,
∴PB=2,PA=8,
∴AB=8-2=6.
看了 (2014•遂宁)已知:如图...的网友还看了以下:
圆C:(x-a)^2+(y-b)^2=r^2的切线系(x-a)cosθ+(y-b)sinθ=r是怎 2020-06-03 …
问下双曲线切线的规律椭圆x^2/a^2+y^2/b^2=1切线为xox/a^2+y0y/b^2=1 2020-06-16 …
(2014•泉州模拟)如图所示的事例中,属于减小压强的是()A.刀切芒果B.线切鸡蛋C.用针绣花D 2020-07-15 …
如图所示的事例中,属于减小压强的是()A.刀切芒果B.线切鸡蛋C.用针绣花D.厚纸片垫提手处 2020-07-15 …
(2014•泉州模拟)如图所示的事例中,属于减小压强的是()A.刀切芒果B.线切鸡蛋C.用针绣花D 2020-07-15 …
数学问题:为什么对于一次或二次曲线切线方程都有换一半的规律?如:椭圆x^2/a^2+y^2/b^2 2020-07-22 …
圆1和圆2外切于M,它们的两条外公切线夹角为60度,连心线与圆1、圆2分别交于A、B,(异于M点) 2020-08-01 …
属减小压强的是1刀切芒果2线切鸡蛋3用针绣花4厚纸片年在手提出 2020-10-29 …
下列事例中,属于减小压强的是()A.刀切芒果B.线切鸡蛋C.用针绣花D.书包带制作得比较宽 2020-12-08 …
求,高智商的来帮忙求啊,解析几何怎么也不会.如图,已知F1F2是椭圆C,x^2/a^2+y^2/b^ 2020-12-19 …