早教吧作业答案频道 -->数学-->
(2014•遵义)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
题目详情
(2014•遵义)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是平行四边形,
∴DC=AB,DC∥AB,
∴∠ODF=∠OBE,
在△ODF与△OBE中
∴△ODF≌△OBE(AAS)
∴BO=DO;
(2)∵BD⊥AD,
∴∠ADB=90°,
∵∠A=45°,
∴∠DBA=∠A=45°,
∵EF⊥AB,
∴∠G=∠A=45°,
∴△ODG是等腰直角三角形,
∵AB∥CD,EF⊥AB,
∴DF⊥OG,
∴OF=FG,△DFG是等腰直角三角形,
∵△ODF≌△OBE(AAS)
∴OE=OF,
∴GF=OF=OE,
即2FG=EF,
∵△DFG是等腰直角三角形,
∴DF=FG=1,
∴DG=
=
,
∵AB∥CD,
∴
=
,
即
=
,
∴AD=2
,
∴DC=AB,DC∥AB,
∴∠ODF=∠OBE,
在△ODF与△OBE中
|
∴△ODF≌△OBE(AAS)
∴BO=DO;
(2)∵BD⊥AD,
∴∠ADB=90°,
∵∠A=45°,
∴∠DBA=∠A=45°,
∵EF⊥AB,
∴∠G=∠A=45°,
∴△ODG是等腰直角三角形,
∵AB∥CD,EF⊥AB,
∴DF⊥OG,
∴OF=FG,△DFG是等腰直角三角形,
∵△ODF≌△OBE(AAS)
∴OE=OF,
∴GF=OF=OE,
即2FG=EF,
∵△DFG是等腰直角三角形,
∴DF=FG=1,
∴DG=
DF2+FG2 |
2 |
∵AB∥CD,
∴
AD |
DG |
EF |
FG |
即
AD | ||
|
2 |
1 |
∴AD=2
2 |
看了 (2014•遵义)如图,▱A...的网友还看了以下:
y=e^x的导数y‘=e^x和公式y=a^x的导数y’=a^xIna中的a和e个代表什么,有什么区 2020-05-13 …
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
下列关于E-R模型的叙述中,哪一条是不正确的? A.在E-R图中,实体类型用矩形表示,属性用椭 2020-05-23 …
下列关于E-R模型的叙述中,哪一条是不正确的?A.在E-R图中,实体类型用矩形表示,属性用椭圆形表示 2020-05-23 …
APEC的A,P,E,C分别是什么意思!比如A是Asia-Pacific,表示亚洲拜托各位大神 2020-06-07 …
(“*”为未知数x)e*/a+a/e*=1/ae*+ae*为什么会等于(a-1/a)(1/e*-e 2020-06-07 …
高等代数题,我算得A+E必可逆,没有因果关系设矩阵A满足A^3=E,则有().A,若A-E可逆,则 2020-06-10 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
用以下英文宇母填在上a,a,a,a,a,a,b,e,e,d,e,e,e,e,e,e,f,g,g用以 2020-06-24 …
倒着写的A和E都是什么意思啊?RT貌似是个数学符号,但是不知道是什么涵义,还望解答,谢谢 2020-06-30 …