早教吧作业答案频道 -->数学-->
已知抛物线y2=2px(p>0)上一点M(t,8)到焦点F的距离是54t.(1)求抛物线C的方程;(2)过F的直线与抛物线C交于A,B两点,是否存在一个定圆与以AB为直径的圆内切,若存在,求该定圆的
题目详情
已知抛物线y2=2px(p>0)上一点M(t,8)到焦点F的距离是
t.
(1)求抛物线C的方程;
(2)过F的直线与抛物线C交于A,B两点,是否存在一个定圆与以AB为直径的圆内切,若存在,求该定圆的方程;若不存在,请说明理由.
5 |
4 |
(1)求抛物线C的方程;
(2)过F的直线与抛物线C交于A,B两点,是否存在一个定圆与以AB为直径的圆内切,若存在,求该定圆的方程;若不存在,请说明理由.
▼优质解答
答案和解析
(1)由抛物线的定义得|MF|=t+
,
∵M(t,8)到焦点F的距离是
t,
∴t+
=
t,
∴t=2p,
∴M(2p,8),代入抛物线方程得到p=4,
∴抛物线C的方程为y2=8x;
(2)设直线l的方程为x=my+2,A(x1,y1),B(x2,y2),
与抛物线方程联立,可得y2-8my-16=0,∴y1+y2=8m,
设A,B的中点为M,则yM=
(y1+y2)=4m,xM=4m2+2,
|AB|=x1+x2+p=8m2+8,
由抛物线的对称性可知,若定圆存在,则其圆心必在x轴上,
设圆的方程为(x-a)2+y2=r2,
∴(4m2+2-a)2+16m2=(4m2+4-r)2,
∴(32-8a)m2+(2-a)2=(32-8r)m2+(4-r)2,
∴
,
∴a=3,r=3.
∴定圆的方程为(x-3)2+y2=9.
p |
2 |
∵M(t,8)到焦点F的距离是
5 |
4 |
∴t+
p |
2 |
5 |
4 |
∴t=2p,
∴M(2p,8),代入抛物线方程得到p=4,
∴抛物线C的方程为y2=8x;
(2)设直线l的方程为x=my+2,A(x1,y1),B(x2,y2),
与抛物线方程联立,可得y2-8my-16=0,∴y1+y2=8m,
设A,B的中点为M,则yM=
1 |
2 |
|AB|=x1+x2+p=8m2+8,
由抛物线的对称性可知,若定圆存在,则其圆心必在x轴上,
设圆的方程为(x-a)2+y2=r2,
∴(4m2+2-a)2+16m2=(4m2+4-r)2,
∴(32-8a)m2+(2-a)2=(32-8r)m2+(4-r)2,
∴
|
∴a=3,r=3.
∴定圆的方程为(x-3)2+y2=9.
看了 已知抛物线y2=2px(p>...的网友还看了以下:
如图,正方形ABCD的顶点A(0,2√2),B(2√2,0),顶点C、D位于第一象限,直线l:x= 2020-06-13 …
设函数f(x)=e^x(1)求证:f(x)≥ex(2)记曲线y=f(x)在点P(t,f(t))(t 2020-07-20 …
1双曲线的一个焦点为F过F作垂直于实轴的直线交双曲线于AB两点若以AB为直径的圆恰好过双曲线的一个 2020-07-30 …
已知曲线L:x=f(t)y=cost(0≤t<π2),其中函数f(t)具有连续导数,且f(0)=0 2020-07-31 …
求高手解一道关于导数的题啊!己知f(x)=x的三次方-x(1)求曲线y=f(x)在点M(t,f(t 2020-08-02 …
已知函数f(x)=x^3-x(1)求曲线y=f(x)在M(t,f(t))处(2)设a>0,如果过点P 2020-11-03 …
(2011•泉州模拟)已知函数f(x)=ex−1ex,g(x)=ex+1ex,动直线x=t分别与函数 2020-11-12 …
第20题2.已知函数f(x)=ax²-lnx,当a=-1/8,0<t<2时,证明:曲线y=f(x)与 2020-11-24 …
如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于点O、A,直线x= 2020-12-23 …
在平面直角坐标系xOy中,已知圆O:x2+y2=1与x轴交于A,B两点,点F(t,0)为一定点.1若 2021-01-11 …