早教吧作业答案频道 -->数学-->
在等差数列{an}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=an(n+1)2,记Tn=-b1+b2-b3+b4-…+(-1)nbn,求Tn.
题目详情
在等差数列{an}中,已知公差d=2,a2是a1与a4的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=a
,记Tn=-b1+b2-b3+b4-…+(-1)nbn,求Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=a
n(n+1) |
2 |
▼优质解答
答案和解析
(Ⅰ)∵a2是a1与a4的等比中项,
∴
=a1a4,
∵在等差数列{an}中,公差d=2,
∴(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+3×2),
化为2a1=22,解得a1=2.
∴an=a1+(n-1)d=2+(n-1)×2=2n.
(Ⅱ)∵bn=a
=n(n+1),
∴Tn=-b1+b2-b3+b4-…+(-1)nbn=-1×(1+1)+2×(2+1)-…+(-1)nn•(n+1).
当n=2k(k∈N*)时,b2k-b2k-1=2k(2k+1)-(2k-1)(2k-1+1)=4k
Tn=(b2-b1)+(b4-b3)+…+(b2k-b2k-1)
=4(1+2+…+k)=4×
=2k(k+1)=
.
当n=2k-1(k∈N*)时,
Tn=(b2-b1)+(b4-b3)+…+(b2k-2-b2k-3)-b2k-1
=
−n(n+1)
=-
.
故Tn=
.
∴
a | 2 2 |
∵在等差数列{an}中,公差d=2,
∴(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+3×2),
化为2a1=22,解得a1=2.
∴an=a1+(n-1)d=2+(n-1)×2=2n.
(Ⅱ)∵bn=a
n(n+1) |
2 |
∴Tn=-b1+b2-b3+b4-…+(-1)nbn=-1×(1+1)+2×(2+1)-…+(-1)nn•(n+1).
当n=2k(k∈N*)时,b2k-b2k-1=2k(2k+1)-(2k-1)(2k-1+1)=4k
Tn=(b2-b1)+(b4-b3)+…+(b2k-b2k-1)
=4(1+2+…+k)=4×
k(k+1) |
2 |
n(n+2) |
2 |
当n=2k-1(k∈N*)时,
Tn=(b2-b1)+(b4-b3)+…+(b2k-2-b2k-3)-b2k-1
=
(n−1)(n+1) |
2 |
=-
(n+1)2 |
2 |
故Tn=
|
看了 在等差数列{an}中,已知公...的网友还看了以下:
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n]a[n+1])^1/2 已知a1 2020-05-16 …
已知数列{an}满足a1=5,a2=5,a(n+1)=an+6a(n-1),(n≥2,n属于正整数 2020-05-17 …
在数列{a(n)},{b(n)}中,a(1)=2,b(1)=4,且a(n),b(n),a(n+1) 2020-05-22 …
已知等比数列{a(n)}中,a(2)=6,a(5)=162,求数列{a(n)}的通项式;若数列{a 2020-06-07 …
已知数列an满足a1=7/3,a(n+1)=3a(n)-4n+2(1)求a2,a3的值(2)证明数 2020-07-09 …
高中数列题(说明:"[]"中内容表示下标)以数列{a[n]}的任意相邻两项为坐标的点P[n](a[ 2020-07-29 …
设a(n+1)=16a(n)的五次方-20a(n)的三次方+5a(n),n=0,1,2,...其中 2020-08-02 …
设数列{an}满足a(n+1)=2an+n^2-4n+1.(1)若a1=3,求证:存在f(n)=an 2020-11-19 …
S(n)是数列{a(n)}的前n项和,已知4S(n)=a(n)^2+2a(n)-3.求a(n)通项S 2020-12-17 …