早教吧作业答案频道 -->数学-->
已知a1=1/3,an=(2n-1)/(2n+1)乘a(n-1)(n大于等于2)求数列an的通项公式
题目详情
已知a1=1/3,an=【(2n-1)/(2n+1)】乘a(n-1)(n大于等于2) 求数列an的通项公式
▼优质解答
答案和解析
由题
a2=3/5×a1
a3=5/7×a2
a4=7/9×a3
……
an= (2n-1)/(2n+1)×a(n-1)
将上面的式子相乘,得
a2×a3×……an=a1×a2×……a(n-1)×[3/5 ×5/7 ×7/9……(2n-1)/(2n+1)]
即,an=a1×3/(2n+1)
a1=1/3
所以,an=1/(2n+1) (n≥2)
n=1时,a1=1/3,满足通项
所以,
an的通项公式为an=1/(2n+1)
a2=3/5×a1
a3=5/7×a2
a4=7/9×a3
……
an= (2n-1)/(2n+1)×a(n-1)
将上面的式子相乘,得
a2×a3×……an=a1×a2×……a(n-1)×[3/5 ×5/7 ×7/9……(2n-1)/(2n+1)]
即,an=a1×3/(2n+1)
a1=1/3
所以,an=1/(2n+1) (n≥2)
n=1时,a1=1/3,满足通项
所以,
an的通项公式为an=1/(2n+1)
看了 已知a1=1/3,an=(2...的网友还看了以下:
级数a(2n+1)+a(2n)收敛,则级数a(n)收敛.这句话是错的,为什么 2020-04-26 …
已知各项均不为零的数列{an}的前n项和为Sn,且Sn=ana(n+1)/2,其中a1=1.若不等 2020-05-13 …
数列an满足a1=1,a2=2,a(n+2)=[1+cos^2(nπ/2)]an+sin^2(nπ 2020-05-15 …
数列an满足a1=1,a2=2,a(n+2)=[1+cos^2(nπ/2)]an+sin^2(nπ 2020-05-15 …
在数列{An}中,已知An+A(n+1)=2n(n∈N*)1.求证数列{A(2n+1)},{A(2 2020-06-03 …
在数列{an}中,设S1=a1+a2+……an,s2=a(n+1).在数列{an}中,设S1=a1 2020-07-09 …
设自然数n>1.求证方程x^(2n)+a1x^(2n-1)+……a(2n-1)x-1=0至少有两个 2020-07-11 …
已知数列a1=1,a2=γ(γ>0),令bn=an·a(n+1),(n,n+1为下标),且{bn} 2020-07-30 …
(x+y)^4(x-y)^2-(x+y)^2(y-x)^4\\(a-1)^2n-1+2(1-a)^2 2020-11-01 …
1.(x+y)^4+x^4+y^4=2(x^2+xy+y^2)^22.(x-2y)x^3-(y-2x 2020-11-03 …