早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设数列{an}的前n项和为Sn,已知a1=1,a2=2,an+2=3Sn-Sn+1+3,n∈N*,(Ⅰ)证明an+2=3an;(Ⅱ)求Sn.

题目详情
设数列{an}的前n项和为Sn,已知a1=1,a2=2,an+2=3Sn-Sn+1+3,n∈N*
(Ⅰ)证明an+2=3an
(Ⅱ)求Sn
▼优质解答
答案和解析
(Ⅰ)证明:当n≥2时,由an+2=3Sn-Sn+1+3,
可得an+1=3Sn-1-Sn+3,
两式相减,得an+2-an+1=3an-an+1
∴an+2=3an
当n=1时,有a3=3S1-S2+3=3×1-(1+2)+3=3,
∴a3=3a1,命题也成立,
综上所述:an+2=3an
(Ⅱ) 由(I)可得
a2k-1=a1×3k-1=3k-1
a2k=a2×3k-1=2×3k-1
,其中k是任意正整数,
∴S2k-1=(a1+a2)+(a3+a4)+…+(a2k-3+a2k-2)+a2k-1
=3+32+…+3k-1+3k-1
=
3(1-3k-1)
1-3
+3k-1
=
5
2
×3k-1-
3
2

S2k=S2k-1+a2k=
5
2
×3k-1-
3
2
+2×3k-1=
3k+1
2
-
3
2

综上所述,Sn=
5
2
×3
n-1
2
-
3
2
n为奇数
3
n+2
2
2
-
3
2
n为偶数