早教吧 育儿知识 作业答案 考试题库 百科 知识分享

对于序列A0:a0,a1,a2,…,an(n∈N*),实施变换T得序列A1:a1+a2,a2+a3,…,an-1+an,记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A0)),记作A2=T2(A0);…;An-1=Tn-1(A0).

题目详情
对于序列A0:a0,a1,a2,…,an(n∈N*),实施变换T得序列A1:a1+a2,a2+a3,…,an-1+an,记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A0)),记作A2=T2(A0);…;An-1=Tn-1(A0).最后得到的序列An-1只有一个数,记作S(A0).
(Ⅰ)若序列A0为1,2,3,求S(A0);
(Ⅱ)若序列A0为1,2,…,n,求S(A0);
(Ⅲ)若序列A和B完全一样,则称序列A与B相等,记作A=B,若序列B为序列A0:1,2,…,n的一个排列,请问:B=A0是S(B)=S(A0)的什么条件?请说明理由.
▼优质解答
答案和解析
(I)序列A0为1,2,3,A1:1+2,2+3,A2:1+2+2+3,即8,∴S(A0)=8.
(II)n=1时,S(A0)=1+2=3.
n=2时,S(A0)=1+2+2+3=1+2×2+3=8,
n=3时,S(A0)=1+2+2+3+2+3+3+4=1+3×2+3×3+4,
…,
取n-1时,S(A0)=
0
n-1
•1+
1
n-1
•2+
2
n-1
•3+…+
n-2
n-1
(n-1)+
n-1
n-1
•n,
取n时,S(A0)=
0
n
•1+
1
n
•2+
2
n
•3+…+
n-1
n
•n+
n
n
•(n+1),
利用倒序相加可得:S(A0)=
n+2
2
×2n=(n+2)•2n-1
由序列A0为1,2,…,n,可得S(A0)=(n+2)•2n-1
(III)序列B为序列A0:1,2,…,n的一个排列,B=A0⇒S(B)=S(A0).而反之不成立.
例如取序列B为:n,n-1,…,2,1.满足S(B)=S(A0).
因此B=A0是S(B)=S(A0)的充分不必要条件.