早教吧作业答案频道 -->其他-->
一般地,我们把函数h(x)=anxn+an-1xn-1+…+a1x+a0(n∈N)称为多项式函数,其中系数a0,a1,…,an∈R.设f(x),g(x)为两个多项式函数,且对所有的实数x等式f[g(x)]=g[f(x)]恒成立.(
题目详情
一般地,我们把函数h(x)=anxn+an-1xn-1+…+a1x+a0(n∈N)称为多项式函数,其中系数a0,a1,…,an∈R.
设 f(x),g(x)为两个多项式函数,且对所有的实数x等式f[g(x)]=g[f(x)]恒成立.
(Ⅰ) 若f(x)=x2+3,g(x)=kx+b(k≠0).
①求g(x)的表达式;
②解不等式f(x)-g(x)>5.
(Ⅱ)若方程f(x)=g(x)无实数解,证明方程f[f(x)]=g[g(x)]也无实数解.
设 f(x),g(x)为两个多项式函数,且对所有的实数x等式f[g(x)]=g[f(x)]恒成立.
(Ⅰ) 若f(x)=x2+3,g(x)=kx+b(k≠0).
①求g(x)的表达式;
②解不等式f(x)-g(x)>5.
(Ⅱ)若方程f(x)=g(x)无实数解,证明方程f[f(x)]=g[g(x)]也无实数解.
▼优质解答
答案和解析
(Ⅰ)①∵f[g(x)]=g[f(x)]即(kx+b)2+3=k(x2+3)+b k2x2+2kbx+b2+3=kx2+3k+b
∴
解得
∴g(x)=x
②f(x)-g(x)>5,即x2-x+3>5 解得 x>2或x<-1
(Ⅱ)反证法:F(x)=f(x)-g(x)则 F[f(x)]=f[f(x)]-g[f(x)]F[g(x)]=f[g(x)]-g[g(x)]若结论成立,则推出 F[f(x)]+F[g(x)]=0; 即F[f(x)]=-F[g(x)]说明存在一点a,a介于f(x)与g(x)之间,满足F(a)=0 因为f(x)=g(x)无实数解,则F(x)=0永远不成立,推出假设不成立,
方程f(x)=g(x)无实数解,方程f[f(x)]=g[g(x)]也无实数解.证毕
∴
|
|
②f(x)-g(x)>5,即x2-x+3>5 解得 x>2或x<-1
(Ⅱ)反证法:F(x)=f(x)-g(x)则 F[f(x)]=f[f(x)]-g[f(x)]F[g(x)]=f[g(x)]-g[g(x)]若结论成立,则推出 F[f(x)]+F[g(x)]=0; 即F[f(x)]=-F[g(x)]说明存在一点a,a介于f(x)与g(x)之间,满足F(a)=0 因为f(x)=g(x)无实数解,则F(x)=0永远不成立,推出假设不成立,
方程f(x)=g(x)无实数解,方程f[f(x)]=g[g(x)]也无实数解.证毕
看了 一般地,我们把函数h(x)=...的网友还看了以下:
已知 以9为底5的对数=a,以3为底7的对数=b则以35为底9的对数=?已知函数f(x)=log2 2020-05-13 …
已知函数f(j)=loga(−j2+aj+中)(a>j,且a≠1).(Ⅰ)当j∈[j,2]时,函数 2020-05-14 …
已知函数y=f(x)是定义在R上的奇函数,当x>=0时,f(x)=x+x^21.求x<0时,f(x 2020-05-14 …
f(x)是定义在(-∞,0)∪(0,+∞)上的函数,对任意非零的实数a,b满足,f(ab)=f(a 2020-05-14 …
数理统计与概率设随机变量X的密度函数为f(x),且f(x)=f(-x),F(x)是X的分布函数,则 2020-05-16 …
已知函数f(x)=loga(3-ax)(1)当x在【0,2】时,函数f(x)恒有意义,求实数a的取 2020-05-16 …
已知二次函数F(x)=ax²+bx+c的系数a、b、c都是整数,并且f(19)=f(99)=199 2020-05-16 …
二次函数f(x)=ax^2+bx+c的系数abc互不相等,若1/a,1/b,1/c成等差数列二次函 2020-05-16 …
已知函数f(x)=x的平方加x-2设当0小于x小于二分之一时,不等式f(x)+3小于2x+a恒成立 2020-05-16 …
已知函数f(x)的定义域为(-1,1),求满足下列条件的实数a的取值范围1.f(x)在定义域内单调 2020-06-02 …