早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=.

题目详情
如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=
a
3
,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ= ___ .
作业帮
▼优质解答
答案和解析
∵平面ABCD∥平面A1B1C1D1,MN⊂平面A1B1C1D1
∴MN∥平面ABCD,又PQ=面PMN∩平面ABCD,
∴MN∥PQ.
∵M、N分别是A1B1、B1C1的中点
∴MN∥A1C1∥AC,
∴PQ∥AC,又AP=
a
3
,ABCD-A1B1C1D1是棱长为a的正方体,
∴CQ=
a
3
,从而DP=DQ=
2a
3

∴PQ=
DQ2+DP2
=
(
2a
3
)2+(
2a
3
)2
=
2
2
3
a.
故答案为:
2
2
3
a