早教吧作业答案频道 -->数学-->
在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=13AB1,BN=13BC1,则下列结论①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④B1D1⊥MN中,正确命题的个数是()A.4B.3C.2D.1
题目详情
在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=
AB1,BN=
BC1,则下列结论①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④B1D1⊥MN中,正确命题的个数是( )
A. 4
B. 3
C. 2
D. 1
1 |
3 |
1 |
3 |
A. 4
B. 3
C. 2
D. 1
▼优质解答
答案和解析
解;在正方体ABCD-A1B1C1D1的四条棱A1A,B1B,C1C,D1D上分别取点G,F,E,H四点,
使AG=
A1A,BF=
B1B,CE=
C1C,DH=
D1D,连接GF,FE,EH,HG,
∵点M、N分别在AB1、BC1上,且AM=
AB1,BN=
BC1,
∴M在线段GF上,N点在线段FE上.且四边形GFEH为正方形,平面GFEH∥平面A1B1C1D1,
∵AA1⊥平面A1B1C1D1,∴AA1⊥平面GFEH,∵MN⊂平面GFEH,∴AA1⊥MN,∴①正确.
∵A1C1∥GE,而GE与MN不平行,∴A1C1与MN不平行,∴②错误.
∵平面GFEH∥平面A1B1C1D1,MN⊂平面GFEH,∴MN∥平面A1B1C1D1,∴③正确.
∵B1D1∥FH,FH⊂平面GFEH,MN⊂平面GFEH,B1D1⊂平面A1B1C1D1,平面GFEH∥平面A1B1C1D1,
且MN与FH不平行,∴B1D1不可能垂直于MN,∴④错误
∴正确命题只有①③
故选C
使AG=
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
∵点M、N分别在AB1、BC1上,且AM=
1 |
3 |
1 |
3 |
∴M在线段GF上,N点在线段FE上.且四边形GFEH为正方形,平面GFEH∥平面A1B1C1D1,
∵AA1⊥平面A1B1C1D1,∴AA1⊥平面GFEH,∵MN⊂平面GFEH,∴AA1⊥MN,∴①正确.
∵A1C1∥GE,而GE与MN不平行,∴A1C1与MN不平行,∴②错误.
∵平面GFEH∥平面A1B1C1D1,MN⊂平面GFEH,∴MN∥平面A1B1C1D1,∴③正确.
∵B1D1∥FH,FH⊂平面GFEH,MN⊂平面GFEH,B1D1⊂平面A1B1C1D1,平面GFEH∥平面A1B1C1D1,
且MN与FH不平行,∴B1D1不可能垂直于MN,∴④错误
∴正确命题只有①③
故选C
看了 在正方体ABCD-A1B1C...的网友还看了以下:
设{an}是首项为1的正项数列,且(n+1)*[a(n+1)]^2-n*(an)^2+a(n+1) 2020-04-09 …
1.已知数列{An}满足{An/n}是公差为1,的等差数列,且An+1=(n+2/n)·An+1( 2020-04-09 …
请问集合符号在导数公式中:若f(x)=x^n,则f'(x)=nx^(n-1),(n∈Q*)请问那个 2020-05-15 …
定义映射f:A→B,其中A={(m,n)|m,n∈R}接着 B=R,已知对所有的有序正整数对(m, 2020-05-16 …
对于正项数列{an},记Hn=/(a1+a2/2 +a3/3 +----+an/n ),若Hn=1 2020-05-16 …
an=(-1)^(n-1),则求和公式为?∵q=-1,a1=1∴anq=(-1)^(n-1)•( 2020-06-04 …
高锰酸是超强酸吗如果n=0,则为极弱酸如HClO-----(OH)Cl如果n=1,则为弱酸如H2S 2020-06-27 …
一批花盆堆成三角形垛,顶层一个,以下各层排成正三角形,逐层每边增加一个花盆,若第n层与第n+1层花 2020-07-10 …
一批花盆堆成三角形垛,顶层一个,以下各层排成正三角形,逐层每边增加一个花盆,若第n层与第n+1层花 2020-07-15 …
不等式的证明设m,n为正整数,f(n)=1+1/2+1/3+.+1/n,证明(1)若n>m,则f( 2020-07-16 …