早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知等差数列{an}的前n项和为Sn,且S9=90,S15=240.(1)求{an}的通项公式an和前n项和Sn(2)设{bn-(-1)nan}是等比数列,且b2=7,b5=71,求数列{bn}的前n项和Tn.

题目详情
已知等差数列{an}的前n项和为Sn,且S9=90,S15=240.
(1)求{an}的通项公式an和前n项和Sn
(2)设{bn-(-1)nan}是等比数列,且b2=7,b5=71,求数列{bn}的前n项和Tn
▼优质解答
答案和解析
(1)设等差数列{an}的公差为d,∵S9=90,S15=240.
9a1+
9×8
2
d=90,15a1+
15×14
2
d=240,
联立解得a1=d=2.
∴an=2+2(n-1)=2n,
Sn=
n(2+2n)
2
=n2+n.
(2)设等比数列{bn-(-1)nan}的公比为q,
b2-(-1)2a2=7-4=3,
b5-(-1)5a5=71+10=81,
∴81=3q3,解得q=3.
∴bn-(-1)nan=bn-(-1)n•2n=3×3n-2=3n-1
∴bn=(-1)n•2n+3n-1
数列{3n-1}的前n项和=
3n-1
3-1
=
1
2
(3n-1).
∴数列{bn}的前n项和Tn=T2k=2[(2-1)+(4-3)+…+(n-(n-1))]+3n-1=2k+3n-1=n+
1
2
(3n-1).
数列{bn}的前n项和Tn=T2k-1=-2+2[(2-3)+(4-5)+…+(n-1-n)]+
1
2
(3n-1)
=-2-2(k-1)+
1
2
(3n-1)
=
3n-(2n+3)
2

∴Tn=
n+
1
2
(3n-1),n=2k
3n-(2n+3)
2
,n=2k-1
,k∈N*