早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)问题探究如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与

题目详情
(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸

①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)
▼优质解答
答案和解析
(1)D1M=D2N.
证明:∵∠ACD1=90°,
∴∠ACH+∠D1CK=180°-90°=90°,
∵∠AHK=∠ACD1=90°,
∴∠ACH+∠HAC=90°,
∴∠D1CK=∠HAC,
在△ACH和△CD1M中,
∠D1CK=∠HAC
∠AHC=∠CMD1=90° 
AC=CD1

∴△ACH≌△CD1M(AAS),
∴D1M=CH,
同理可证D2N=CH,
∴D1M=D2N;

(2)①证明:D1M=D2N成立.
过点C作CG⊥AB,垂足为点G,
∵∠H1AC+∠ACH1+∠AH1C=180°,
∠D1CM+∠ACH1+∠ACD1=180°,
∠AH1C=∠ACD1
∴∠H1AC=∠D1CM,
在△ACG和△CD1M中,
∠H1AC=∠D1CM
∠AGC=∠CMD1=90°
AC=CD1

∴△ACG≌△CD1M(AAS),
∴CG=D1M,
同理可证CG=D2N,
∴D1M=D2N;
②作图正确.
D1M=D2N还成立.