早教吧 育儿知识 作业答案 考试题库 百科 知识分享

图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN=C

题目详情
图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米.
(1)求AP长的取值范围;
(2)当∠CPN=60°时,求AP的值;
(3)在阳光垂直照射下,伞张得最开时,求伞下的阴影(假定为圆面)面积S(结果保留π).
作业帮
▼优质解答
答案和解析
(1)∵BC=2.0分米,AC=CN+PN=12分米,
∴AB=12-2=10(分米),
∴AP的取值范围为:0分米≤AP≤10分米.
(2)∵CN=PN,∠CPN=60°,
∴△PCN等边三角形.
∴CP=6分米.
∴AP=AC-PC=12-6=6(分米),
即当∠CPN=60°时,AP=6分米;
(2)连接MN、EF,分别交AC于B、H.
设AP=x分米,
∵PM=PN=CM=CN,
∴四边形PNCM是菱形.
∴MN与PC互相垂直平分,AC是∠ECF的平分线,
PB=
PC
2

在Rt△MBP中,PM=6分米,
∴MB2=PM2-PB2=62-(6-
1
2
x)2=6x-
1
4
x2
∵CE=CF,AC是∠ECF的平分线,
∴EH=HF,EF⊥AC.作业帮
∵∠ECH=∠MCB,∠EHC=∠MBC=90°,
∴△CMB∽△CEH.
MB
EH
=
CM
CE

MB2
EH2
=(
6
18
2=
1
9

∴EH2=9•MB2=9•(6x-
1
4
x2).
∴S=π•EH2=9π(6x-
1
4
x2),
即S=-
9
4
πx2+54πx,
∵x=-
b
2a
=12,0≤x≤10,
∴x=10时,S最大=-
9
4
π×100+54π×10=315π(平方分米).