早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数论问题,最大无法表示成px+qy(x>=0,y>=0)的数有俩个数p,q,且gcd(q,p)(最大公约数)=1,则最大无法表示成px+qy(x>=0,y>=0)的数是pq-q-p(对于n>pq-q-p,都可以表示成px+qy;而pq-q-p,就无法表示成px+qy).谁

题目详情
数论问题,最大无法表示成px+qy(x>=0,y>=0)的数
有俩个数p,q,且gcd(q,p)(最大公约数)=1,则最大无法表示成px+qy(x>=0,y>=0)的数是pq-q-p(对于n>pq-q-p,都可以表示成px+qy;而pq-q-p,就无法表示成px+qy).
谁能给我一个证明?或者能说说怎么推导出来的
▼优质解答
答案和解析
x>=0,y>=0很重要.
1.
假设可以表示为pq-q-p
那么
px+qy=pq-q-p
p(x+1)+q(y+1)=pq
p|y+1,q|x+1
又p(x+1),q(y+1)=0故pq-q-p,就无法表示成px+qy
2.
(p-1)(q-1)=pq-p-q+1
对于n>pq-q-p即n>=(q-1)(p-1)
gcd(p,q)=1
对于z0>b,显然a>0
那么如果a>q,取a1=a-q,b1=b+p
那么有a1*p+b1*q=z.
如果a1>q,可以继续以得到
Ap+Bq=z,且0