早教吧作业答案频道 -->数学-->
如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,点B在⊙O上,BP的延长线交直线l于点C,连结AB,AB=AC.(1)直线AB与⊙O相切吗?请说明理由;(2)若PC=25,求⊙O的半径;(3
题目详情
如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,点B在⊙O上,BP的延长线交直线l于点C,连结AB,AB=AC.
(1)直线AB与⊙O相切吗?请说明理由;
(2)若PC=2
,求⊙O的半径;
(3)线段BC的中点为M,当⊙O的半径为r为多少时,直线AM与⊙O相切.
(1)直线AB与⊙O相切吗?请说明理由;
(2)若PC=2
5 |
(3)线段BC的中点为M,当⊙O的半径为r为多少时,直线AM与⊙O相切.
▼优质解答
答案和解析
(1)直线AB与⊙O相切.理由如下:连接OB,
∵AB=AC,
∴∠ABC=∠ACB,
又∵OP=OB,
∴∠OPB=∠OBP,
∵OA⊥l,
∴∠OAC=90°,
∴∠ACB+∠APC=90°,
而∠APC=∠OPB=∠OBP,
∴∠OBP+∠ABC=90°,即∠OBA=90°,
∴OB⊥AB,
∴直线AB是⊙O的切线;
(2)设⊙O半径为r,则OP=OB=r,PA=5-r;
在Rt△ACP中,AC2=PC2-PA2=(2
)2-(5-r)2,
在Rt△AOB中,AB2=OA2-OB2=52-r2,
∵AC=AB,
∴(2
)2-(5-r)2=52-r2,解得r=3,
即⊙O的半径为3;
(3)作OT⊥AM于T,如图,
当OT=OB时,AM与⊙相切,
∴∠OAB=∠OAT,
∵AB=AC,M为线段BC的中点,
∴∠CAM=∠MAB,
而∠MAB=∠OAB+∠OAT,
∴∠CAM=2∠MAO,
∵∠CAO=90°
∴∠OAT=30°,
∴OT=
OA=
,
即⊙O的半径为r为
时,直线AM与⊙O相切.
∵AB=AC,
∴∠ABC=∠ACB,
又∵OP=OB,
∴∠OPB=∠OBP,
∵OA⊥l,
∴∠OAC=90°,
∴∠ACB+∠APC=90°,
而∠APC=∠OPB=∠OBP,
∴∠OBP+∠ABC=90°,即∠OBA=90°,
∴OB⊥AB,
∴直线AB是⊙O的切线;
(2)设⊙O半径为r,则OP=OB=r,PA=5-r;
在Rt△ACP中,AC2=PC2-PA2=(2
5 |
在Rt△AOB中,AB2=OA2-OB2=52-r2,
∵AC=AB,
∴(2
5 |
即⊙O的半径为3;
(3)作OT⊥AM于T,如图,
当OT=OB时,AM与⊙相切,
∴∠OAB=∠OAT,
∵AB=AC,M为线段BC的中点,
∴∠CAM=∠MAB,
而∠MAB=∠OAB+∠OAT,
∴∠CAM=2∠MAO,
∵∠CAO=90°
∴∠OAT=30°,
∴OT=
1 |
2 |
5 |
2 |
即⊙O的半径为r为
5 |
2 |
看了 如图,已知直线l与⊙O相离,...的网友还看了以下:
如图,已知四边形ABCD内接于⊙O,A是BDC的中点,AE⊥AC于A,与⊙O及CB的延长线分别交于 2020-05-13 …
如e所示,已知七边形ABCD内接于⊙O,A是BDC的中点,AE⊥AC于A,与⊙O及CB的延长线分别 2020-05-13 …
已知e为平行四边形abcd中dc边延长线上一点,且ce=dc,连ae分别交bc bd于f g,连已 2020-05-16 …
在三角形abc中ab=bc=5ac=6,过a作ad平行于bc如图ACB中AC=AB=5,AC=6, 2020-05-17 …
1.在三角形ABC中,∠BAC=60°,∠B,∠C的平分线交于O,连接AO,则∠OAC=?2.在圆 2020-06-05 …
如图所示,A、B两球用劲度系数为k1的轻弹簧相连,B球用长为L的细线悬于O点,A球固定在O点正下方 2020-06-23 …
三角形ABC中角A等于62度角B角C的平分线交于O连接A0问角CA0多少度 2020-07-09 …
如图,已知四边形ABCD内接于⊙O,A是BDC的中点,AE⊥AC于A,与⊙O及CB的延长线分别交于 2020-07-26 …
如图,抛物线y=-x2+6x与x轴交于O,A两点,与直线y=2x交于O,B两点.点P在线段OA上以 2020-08-02 …
(2005•温州)如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延 2020-08-03 …