早教吧作业答案频道 -->数学-->
如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,点B在⊙O上,BP的延长线交直线l于点C,连结AB,AB=AC.(1)直线AB与⊙O相切吗?请说明理由;(2)若PC=25,求⊙O的半径;(3
题目详情
如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,点B在⊙O上,BP的延长线交直线l于点C,连结AB,AB=AC.
(1)直线AB与⊙O相切吗?请说明理由;
(2)若PC=2
,求⊙O的半径;
(3)线段BC的中点为M,当⊙O的半径为r为多少时,直线AM与⊙O相切.
(1)直线AB与⊙O相切吗?请说明理由;
(2)若PC=2
5 |
(3)线段BC的中点为M,当⊙O的半径为r为多少时,直线AM与⊙O相切.
▼优质解答
答案和解析
(1)直线AB与⊙O相切.理由如下:连接OB,
∵AB=AC,
∴∠ABC=∠ACB,
又∵OP=OB,
∴∠OPB=∠OBP,
∵OA⊥l,
∴∠OAC=90°,
∴∠ACB+∠APC=90°,
而∠APC=∠OPB=∠OBP,
∴∠OBP+∠ABC=90°,即∠OBA=90°,
∴OB⊥AB,
∴直线AB是⊙O的切线;
(2)设⊙O半径为r,则OP=OB=r,PA=5-r;
在Rt△ACP中,AC2=PC2-PA2=(2
)2-(5-r)2,
在Rt△AOB中,AB2=OA2-OB2=52-r2,
∵AC=AB,
∴(2
)2-(5-r)2=52-r2,解得r=3,
即⊙O的半径为3;
(3)作OT⊥AM于T,如图,
当OT=OB时,AM与⊙相切,
∴∠OAB=∠OAT,
∵AB=AC,M为线段BC的中点,
∴∠CAM=∠MAB,
而∠MAB=∠OAB+∠OAT,
∴∠CAM=2∠MAO,
∵∠CAO=90°
∴∠OAT=30°,
∴OT=
OA=
,
即⊙O的半径为r为
时,直线AM与⊙O相切.
∵AB=AC,
∴∠ABC=∠ACB,
又∵OP=OB,
∴∠OPB=∠OBP,
∵OA⊥l,
∴∠OAC=90°,
∴∠ACB+∠APC=90°,
而∠APC=∠OPB=∠OBP,
∴∠OBP+∠ABC=90°,即∠OBA=90°,
∴OB⊥AB,
∴直线AB是⊙O的切线;
(2)设⊙O半径为r,则OP=OB=r,PA=5-r;
在Rt△ACP中,AC2=PC2-PA2=(2
5 |
在Rt△AOB中,AB2=OA2-OB2=52-r2,
∵AC=AB,
∴(2
5 |
即⊙O的半径为3;
(3)作OT⊥AM于T,如图,
当OT=OB时,AM与⊙相切,
∴∠OAB=∠OAT,
∵AB=AC,M为线段BC的中点,
∴∠CAM=∠MAB,
而∠MAB=∠OAB+∠OAT,
∴∠CAM=2∠MAO,
∵∠CAO=90°
∴∠OAT=30°,
∴OT=
1 |
2 |
5 |
2 |
即⊙O的半径为r为
5 |
2 |
看了 如图,已知直线l与⊙O相离,...的网友还看了以下:
A的特征值全部为0,A一定等于O吗AX=mXX为特征向量m为特征值那么可以理解为当m=0时,AX= 2020-05-13 …
英语单词辨音找出画()部分读音与其余不同的单词()1.A .kn(ee) B.n(e)ck C.r 2020-05-17 …
如图所示,三个小球从同一高度处的O点分别以水平初速度v1、v2、v3抛出,落在水平面上的位置分别是 2020-07-21 …
如图24—A—5,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB 2020-07-22 …
微分的问题,好的话加50分?微分定义中有△y=A△x+o(△x)又因为△y=dy+o(dy)--- 2020-07-22 …
根式计算化简1、(1/x^2-3x+2)+(1/x^2-x)+(1/x^2+x)+(1/x^2+3 2020-07-30 …
已知平面上直线L的方向向量e=(-4/5,3/5),点O(0,0)和A(1,-2)在L的射影分别是 2020-07-30 …
如图所示,三个小球从同一高处的O点分别以水平初速度v1、v2、v3抛出,落在水平面上的位置分别是A 2020-07-30 …
概率论问题,1.ĀUŌ=(AnO)的逆事件?口述:A的逆事件并O的逆事件,等于A交O的逆事件?这个公 2020-11-03 …
如图,已知⊙O和⊙O′相交于A、B两点,过点A作⊙O′的切线交⊙O于点C,过点B作两圆的割线分别交⊙ 2020-12-05 …