早教吧 育儿知识 作业答案 考试题库 百科 知识分享

中值定理题设f(x)在[0,π]上连续,在(0,π)内可导.证明存在ξ属于(0,π),使得f’(ξ)sinξ+f(ξ)cosξ=0求救!

题目详情
中值定理题
设f(x)在[0,π]上连续,在(0,π)内可导.证明存在ξ属于(0,π),使得f’(ξ)sinξ+f(ξ)cosξ=0 求救!
▼优质解答
答案和解析
令g(x)=f(x)sinx,则g(0)=g(π)=0,因此由罗尔定理,有存在ξ属于(0,π),使得g'(ξ)=0,g'(ξ)=f’(ξ)sinξ+f(ξ)cosξ