早教吧 育儿知识 作业答案 考试题库 百科 知识分享

A是n阶矩阵,且A≠0.证明:存在一个n阶非零矩阵B,使AB=0的充分必要条件是|A|=0.

题目详情
A是n阶矩阵,且A≠0.证明:存在一个n阶非零矩阵B,使AB=0的充分必要条件是|A|=0.
▼优质解答
答案和解析
证明:
“必要性”(⇒)
(反证法)
反设|A|≠0,则:A-1存在.
所以当AB=0时,二边右乘A-1得:B=0,与存在一个n阶非零矩阵B,使AB=0矛盾.
所以|A|=0.
“充分性”(⇐)
设|A|=0,则方程组Ax=0有非零x=(b1,b2,…bn).
构造矩阵:B=
b100
b200
bn00

则B≠0,且AB=0.
证毕.