早教吧作业答案频道 -->数学-->
设椭圆E=x2/a2y2/b2=1.过M(2.根号2).N(根号6.1).O为坐标原点
题目详情
设椭圆E=x2/a2 y2/b2=1.过M(2.根号2).N(根号6.1).O为坐标原点
▼优质解答
答案和解析
1.将M和N坐标代入方程
4/a²+2/b²=1(1)
6/a²+1/b²=1(2)
(1)-(2)×2
4/a²-12/a²=-1
8/a²=1
a²=8
b²=4
椭圆方程:x²/8+y²/4=1
2.设y=kx+m,
y=kx+m,x2/8+y2/4=1
∴(1+2k2)x2+4kmx+2m2-8=0
当△=8(8k2-m2+4)>0
x1+x2=-4km/1+2k2
x1x2=2m2-8/1+2k2
y1y2=m2-8k2/1+2k2,
OA⊥OB
∴x1x2+y1y2=0
∴3m2-8k2-8=0
∴ k2=3m2-8/8≥0
又 8k2-m2+4>0
∴ m2>2,3m2≥8
∴ m≥2√6/3或m≤-2√6/3
又y=kx+m与圆心在原点的圆相切
∴ r=|m|/√1+k2, r=2√6/3
∴ x2+y2=8/3
K不存在时,切线为 x=±2√6/3,交点( 2√6/3, ±2√6/3)或( -2√6/3, ±2√6/3),
∵ |AB|=1+k2|x1-x2|
k≠0时, |AB|=√32/3(1+1/4k4+1k2+4)
∴ 4√6/3<|AB|≤2√3(当 k=±√2/2时取等)
k=0时, |AB|=4√3/6
k不存时, |AB|=4√3/6
∴ |AB|∈[4√3/6,2√3]
4/a²+2/b²=1(1)
6/a²+1/b²=1(2)
(1)-(2)×2
4/a²-12/a²=-1
8/a²=1
a²=8
b²=4
椭圆方程:x²/8+y²/4=1
2.设y=kx+m,
y=kx+m,x2/8+y2/4=1
∴(1+2k2)x2+4kmx+2m2-8=0
当△=8(8k2-m2+4)>0
x1+x2=-4km/1+2k2
x1x2=2m2-8/1+2k2
y1y2=m2-8k2/1+2k2,
OA⊥OB
∴x1x2+y1y2=0
∴3m2-8k2-8=0
∴ k2=3m2-8/8≥0
又 8k2-m2+4>0
∴ m2>2,3m2≥8
∴ m≥2√6/3或m≤-2√6/3
又y=kx+m与圆心在原点的圆相切
∴ r=|m|/√1+k2, r=2√6/3
∴ x2+y2=8/3
K不存在时,切线为 x=±2√6/3,交点( 2√6/3, ±2√6/3)或( -2√6/3, ±2√6/3),
∵ |AB|=1+k2|x1-x2|
k≠0时, |AB|=√32/3(1+1/4k4+1k2+4)
∴ 4√6/3<|AB|≤2√3(当 k=±√2/2时取等)
k=0时, |AB|=4√3/6
k不存时, |AB|=4√3/6
∴ |AB|∈[4√3/6,2√3]
看了 设椭圆E=x2/a2y2/b...的网友还看了以下:
已知在直角坐标系8,二(0,4)、B(八,0).把线段二B绕点B顺时针旋转90°,得到线段B0,过 2020-05-17 …
1.设椭圆的中心为原点,对称轴为坐标轴,焦距与长轴之和为10,离心率e=1/3,求椭圆的方程.2. 2020-05-22 …
已知圆O:x2+y2=1,把圆O上各点的横坐标伸长到原来的2倍(纵坐标不变)得到曲线E.(1)求曲 2020-06-14 …
设椭圆E:+=1(a>b>0)的上焦点是F1,过点P(3,4)和F1作直线PF1交椭圆于A,B两点 2020-06-21 …
如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,A,B 2020-07-06 …
已知圆,圆上各点的纵坐标保持不变,横坐标伸长到原来的倍,得一椭圆E,(1)求椭圆E的方程,并证明椭 2020-07-21 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)过点p(1,3/2),离心率e=1/2 2020-08-01 …
(12分)设椭圆E:(a>b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程 2020-08-02 …
解析几何已知圆O:x^2+y^2=a^2(a>0),把圆O上各点的横坐标不变,纵坐标伸长到原来的根 2020-08-02 …
还会提分谁会这道题...几何的.快已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(-2,0), 2020-12-08 …