早教吧作业答案频道 -->数学-->
已知数列{An}的前n项和为Sn,且6Sn=(2n+3)An+n〖n∈N*〗〈1〉求数列{An}的通项公式.
题目详情
已知数列{An}的前n项和为Sn,且6Sn=(2n+3)An+n〖n∈N*〗 〈1〉求数列{An}的通项公式.
▼优质解答
答案和解析
6s(n)=(2n+3)a(n)+n,
6a(1)=6s(1)=5a(1)+1,a(1)=1.
6s(n+1)=(2n+5)a(n+1)+n+1,
6a(n+1)=6s(n+1)-6s(n)=(2n+5)a(n+1)+1 - (2n+3)a(n),
(2n-1)a(n+1) = (2n+3)a(n) - 1 = (2n+3)a(n) + [(2n-1)-(2n+3)]/4,
(2n-1)[a(n+1)-1/4] = (2n+3)[a(n)-1/4],
(2n-1)(2n+1)[a(n+1)-1/4] = (2n+1)(2n+3) [a(n)-1/4],
[a(n+1)-1/4]/[(2n+1)(2n+3)] = [a(n)-1/4]/[(2n-1)(2n+1)],
{[a(n)-1/4]/[(2n-1)(2n+1)]}是常数列.
[a(n)-1/4]/[(2n-1)(2n+1)]=[a(1)-1/4]/[(2-1)(2+1)]=(3/4)/3=1/4,
a(n)=[(2n-1)(2n+1)+1]/4 = n^2
6a(1)=6s(1)=5a(1)+1,a(1)=1.
6s(n+1)=(2n+5)a(n+1)+n+1,
6a(n+1)=6s(n+1)-6s(n)=(2n+5)a(n+1)+1 - (2n+3)a(n),
(2n-1)a(n+1) = (2n+3)a(n) - 1 = (2n+3)a(n) + [(2n-1)-(2n+3)]/4,
(2n-1)[a(n+1)-1/4] = (2n+3)[a(n)-1/4],
(2n-1)(2n+1)[a(n+1)-1/4] = (2n+1)(2n+3) [a(n)-1/4],
[a(n+1)-1/4]/[(2n+1)(2n+3)] = [a(n)-1/4]/[(2n-1)(2n+1)],
{[a(n)-1/4]/[(2n-1)(2n+1)]}是常数列.
[a(n)-1/4]/[(2n-1)(2n+1)]=[a(1)-1/4]/[(2-1)(2+1)]=(3/4)/3=1/4,
a(n)=[(2n-1)(2n+1)+1]/4 = n^2
看了 已知数列{An}的前n项和为...的网友还看了以下:
当n.>=0时,多项式x^(n+2)+(〖x+1)〗^(2n+1)能被x^2+x+1整除证明多项式 2020-04-27 …
设数集M={x丨m≤x≤m+3/4},N={x丨n-1/3≤x≤n},且M,N都是集合U={x丨0 2020-05-15 …
已知集合M={x|x=3n,n属于Z},N={x|x=3n+1,n属于Z},P={x|x=3n+1 2020-05-16 …
在数列{a(n)},{b(n)}中,a(1)=2,b(1)=4,且a(n),b(n),a(n+1) 2020-05-22 …
已知集合M={x|-3小于x小于等于5}N={x|x小于-5或x大于5}M并N怎已知集合M={x| 2020-06-20 …
新高一预习的呐、有好多不清楚、1.若A={1,2,3,4,5,6},B={2,4,6,8},记M- 2020-06-28 …
设数集M={x丨m≤x≤m+3/4},N={x丨n-1/3≤x≤n},且M,N都是集合U={x丨0 2020-07-29 …
高1数学题设数集M={X|M小于等于X小于等于M+3/4},N={X|n--1/3小于等于X小于等 2020-07-30 …
1.设M={x丨x=(kπ+π)/2-π/4,k∈Z},N={x丨x=kπ/4+π/2,k∈Z},则 2020-10-31 …
1{x|x=2n,n∈Z}{x|x=4n+2,n∈Z}2设集合M={a,b},若集合N={x|x是M 2020-11-01 …