早教吧作业答案频道 -->数学-->
设抛物线y=-x²+Bx+C与x轴有两个交点x=a,x=b,(a
题目详情
设抛物线y=-x²+Bx+C与x轴有两个交点x=a,x=b,(a
▼优质解答
答案和解析
令g(x)=-x²+Bx+C,h(x)=f(x)-g(x)=f(x)+x²-Bx-C
那么h(a)=h(b)=0,且h(x)在[a,b]上二阶可导
h(x)在(a,b)内有一个零点,设为c
所以在(a,c)上,对h(x)运用微分中值定理,在(a,c)内存在一点ζ1,使h'(ζ1)=0
同理,在(c,b)内存在一点ζ2,使h'(ζ2)=0
再一次在(ζ1,ζ2)上,对h'(x)运用微分中值定理
在(ζ1,ζ2)内存在一点ζ,使h''(ζ)=0
而h''(x)=f''(x)+2
所以在(a,b)内存在一点ζ,使f''(ζ)+2=0
主要是微分中值定理的应用,
那么h(a)=h(b)=0,且h(x)在[a,b]上二阶可导
h(x)在(a,b)内有一个零点,设为c
所以在(a,c)上,对h(x)运用微分中值定理,在(a,c)内存在一点ζ1,使h'(ζ1)=0
同理,在(c,b)内存在一点ζ2,使h'(ζ2)=0
再一次在(ζ1,ζ2)上,对h'(x)运用微分中值定理
在(ζ1,ζ2)内存在一点ζ,使h''(ζ)=0
而h''(x)=f''(x)+2
所以在(a,b)内存在一点ζ,使f''(ζ)+2=0
主要是微分中值定理的应用,
看了 设抛物线y=-x²+Bx+C...的网友还看了以下:
点A是函数y=2/x(x>0)图像上任意一点(一象限),过A点分别作x、y的平行线交函数y=1/x 2020-04-05 …
二次函数的问题,有难度已知抛物线Y=X^2+AX+A-2设Y=X^2+AX+A-2与Y轴交点C,如 2020-06-13 …
设a>0,如图,已知直线l:y=ax及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<a) 2020-06-14 …
已知集合A={(X,Y)丨2X-Y=0}B={(X.Y)丨3X+Y=0}C={(X,Y)丨2X-Y 2020-06-23 …
在坐标系中,直线y=-4x/3+4分别交x、y轴于A、B两点(1)设P是直线AB上一动点(不与A重 2020-07-18 …
(2013•滨湖区二模)如图,已知二次函数y=ax2+bx+c的图象交x轴的负半轴于点A(-5,0 2020-07-20 …
设y=f(x)在区间(a,b)内连续,则f(x)在区间(a,b)内()?A.有界B.无界C.设y= 2020-07-31 …
1设y=|x-1|+|x-2|+|x-3|+|x-5|+|x-7|写一个值使其成为y=10的充分条 2020-08-02 …
已知:如图,AB垂直BC,AD平行BC,AB=3,AD=2,点P在线段AB上,连接PD,过点D作P 2020-08-02 …
已知抛物线Y=ax2-2x+c与它的对称轴相较于点A(1,-4),与Y轴相交于C,与Y轴正半轴交于B 2021-01-10 …