早教吧作业答案频道 -->数学-->
如图1,若分别以△ABC和AC、BC两边为直角边向外侧作等腰直角△ACD、△BCE,则称这两个等腰直角三角形为外展双叶等腰直角三角形.(1)发现:如图2,当∠ACB=90°,求证:△ABC与△DCE的面
题目详情
如图1,若分别以△ABC和AC、BC两边为直角边向外侧作等腰直角△ACD、△BCE,则称这两个等腰直角三角形为外展双叶等腰直角三角形.
(1)发现:如图2,当∠ACB=90°,求证:△ABC与△DCE的面积相等.
(2)引申:如果∠ACB≠90°时.(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由.
(3)运用:①如图3,分别以△ABC的三边为边向外侧作四边形ABED、BCFG和ACIH为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AB=4,BC=3,当△ABC满足___时,图中△ADH、△BEF、△CGI的面积和有最大值是___②如图4,在△ADH、△BEF、△CGI的面积和取最大值时,试写出S△DEF、S△GFE、S正方形AHIC三者之间的数量关系.
(1)发现:如图2,当∠ACB=90°,求证:△ABC与△DCE的面积相等.
(2)引申:如果∠ACB≠90°时.(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由.
(3)运用:①如图3,分别以△ABC的三边为边向外侧作四边形ABED、BCFG和ACIH为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AB=4,BC=3,当△ABC满足___时,图中△ADH、△BEF、△CGI的面积和有最大值是___②如图4,在△ADH、△BEF、△CGI的面积和取最大值时,试写出S△DEF、S△GFE、S正方形AHIC三者之间的数量关系.
▼优质解答
答案和解析
(1)如图1所示:
∵△ACD和△BCE均为等腰直角三角形,
∴DC=AC,CE=CB,∠ACD=∠BCE=90°.
∵∠ACB=∠ACD=∠BCE=90°,
∴∠DCE=90°.
在△DEC和△ABC中,
,
∴△DCE≌△ACB.
∴△ABC与△DCE的面积相等.
(2)成立.
理由:如图2所示:过点A作AG⊥BC,过点D作DF⊥CE,垂足为F.
∵△ACD和△BCE均为等腰直角三角形,
∴∠DCA=∠ECB=∠FCB=90°,DC=AC,CE=CB.
∵FE⊥BC,AG⊥CB,
∴FC∥AG.
∴∠FCA=∠GAC.
∵∠DCF+∠FCA=90°,∠FCA+∠ACG=90°,
∴∠DCF=∠ACG.
在△DCF和△ACG中,
,
∴△DCF≌△ACG.
∴FD=AG.
又∵CE=CB.
∴
CE•DC=
CB•AG,即△ABC与△DCE的面积相等.
(3)①如图3所示:
∵由(2)可知:S△ADH=S△ABC、S△BEF=S△ABC、S△CGI=S△ABC,
∴S△ADH+S△BEF+S△CGI=3S△ABC.
∴当∠ACB=90°,时S△ADH+S△BEF+S△CGI有最大值,最大值=3×
×3×4=18.
故答案为:∠ACB=90°;18.
②S△DEF+S△EFG=
S正方形AHIC.
理由:由①可知当∠ACB=90°时,S△ADH+S△BEF+S△CGI有最大值.
当∠ACB=90°时,如图4所示:
∵四边形ABED为正方形,
∴∠ABE=90°.
又∵∠ABC=90°,
∴∠ABE+∠ABC=90°+90°=180°.
∴点E、B、C在一条直线上.
∴△DEF的面积=
ED•AD=
AB2.
同理:△EFG的面积=
FG•CG=
CB2.
∵AC2=AB2+BC2,
∴S△DEF+S△EFG=
AB2+
CB2=
AC2=
S正方形AHIC.
∴S△DEF+S△EFG=
S正方形AHIC.
∵△ACD和△BCE均为等腰直角三角形,
∴DC=AC,CE=CB,∠ACD=∠BCE=90°.
∵∠ACB=∠ACD=∠BCE=90°,
∴∠DCE=90°.
在△DEC和△ABC中,
|
∴△DCE≌△ACB.
∴△ABC与△DCE的面积相等.
(2)成立.
理由:如图2所示:过点A作AG⊥BC,过点D作DF⊥CE,垂足为F.
∵△ACD和△BCE均为等腰直角三角形,
∴∠DCA=∠ECB=∠FCB=90°,DC=AC,CE=CB.
∵FE⊥BC,AG⊥CB,
∴FC∥AG.
∴∠FCA=∠GAC.
∵∠DCF+∠FCA=90°,∠FCA+∠ACG=90°,
∴∠DCF=∠ACG.
在△DCF和△ACG中,
|
∴△DCF≌△ACG.
∴FD=AG.
又∵CE=CB.
∴
1 |
2 |
1 |
2 |
(3)①如图3所示:
∵由(2)可知:S△ADH=S△ABC、S△BEF=S△ABC、S△CGI=S△ABC,
∴S△ADH+S△BEF+S△CGI=3S△ABC.
∴当∠ACB=90°,时S△ADH+S△BEF+S△CGI有最大值,最大值=3×
1 |
2 |
故答案为:∠ACB=90°;18.
②S△DEF+S△EFG=
1 |
2 |
理由:由①可知当∠ACB=90°时,S△ADH+S△BEF+S△CGI有最大值.
当∠ACB=90°时,如图4所示:
∵四边形ABED为正方形,
∴∠ABE=90°.
又∵∠ABC=90°,
∴∠ABE+∠ABC=90°+90°=180°.
∴点E、B、C在一条直线上.
∴△DEF的面积=
1 |
2 |
1 |
2 |
同理:△EFG的面积=
1 |
2 |
1 |
2 |
∵AC2=AB2+BC2,
∴S△DEF+S△EFG=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴S△DEF+S△EFG=
1 |
2 |
看了 如图1,若分别以△ABC和A...的网友还看了以下:
椭圆x^2/a^2+y^2/b^2若点P是椭圆上任意一点,椭圆x^2/a^2+y^2/b^2=1, 2020-06-21 …
下列命题正确的个数是()①若直线a//b,b包含于α,则a//α②若直线a//α,b包含于α,则a 2020-07-09 …
已知直线a,b,c,d,给出以下四个命题:①若a∥b,a⊥c,则b⊥c;②若a⊥c,b⊥c,则a∥ 2020-07-14 …
如图,P是抛物线y=2(x-2)2的对称轴上一个动点,直线x=t平行于y轴,分别与直线y=x、抛物 2020-07-20 …
设直线x-3y+m=0(m≠0)与双曲线x2a2?y2b2=1(a>0,b>0)的两条渐近线分别交 2020-08-01 …
如图,直线y=二分之一x+1分别与x轴、y轴交于点A、B直线y=x+b分别与x轴、y轴交于点C、D直 2020-11-01 …
在平面直角坐标系中,坐标原点为O,直线1:y=x+4与x轴交于点A,直线2:y=-x+2与Y轴交于B 2020-11-01 …
P是抛物线y=2(x-2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B 2020-11-04 …
已知梯形的四个顶点为A(2,5),B(2,3),C(6,3),D(6,7)及直线y=0.5x+b.2 2020-12-03 …
在三角形ABC中,a,b,c分别为角A,B,C的对边,M=(a,b),n=(sinB,-cosA)且 2021-01-11 …